Quantum theory of anharmonic oscillators-a variational and systematic general approximation method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17345
(http://iopscience.iop.org/0305-4470/17/2/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:51

Please note that terms and conditions apply.

Quantum theory of anharmonic oscillators-a variational and systematic general approximation method

Kazuo Yamazaki
Institut für Theoretische Physik, der Universität Graz, Austria and Physics Department, College of General Education, Kyoto University, Kyoto 606, Japan \dagger

Received 7 March 1983, in final form 18 August 1983

Abstract

This is an investigation of the energy levels and wavefunctions of an anharmonic oscillator characterised by the potential $\frac{1}{2} \omega^{2} q^{2}+\lambda q^{4}$. As a lowest-order approximation an extremely simple formula for energy levels, $E_{l}^{(0)}=\left(i+\frac{1}{2}\right) \frac{1}{4}\left(3 / \alpha_{i}+\alpha_{1}\right)$, is derived (i being the quantum number of the energy level), which covers any $(\lambda, i), \alpha_{t}$ is the real positive root of a cubic equation: $y_{i} \alpha_{i}^{3}+\alpha_{i}^{2}-1=0$, with $y_{i}=6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1)$. This formula reproduces the exact energy levels within an error of about 1% for any (λ, i) (the worst case is 2% for $i=0, \lambda \rightarrow \infty$). Systematically higher orders of 'our' perturbation theory are developed, which contains the 'usual' perturbation theory for the limiting case of small λ, but 'our' perturbation theory is valid for any (i, λ). 'Our' second-order perturbation theory reduces the errors of our lowest-order results by a factor of about $\frac{1}{5}$ in general. Various ranges (large, intermediate, small) of (i, λ) are investigated and compared with the exact values obtained by the Montroll group. For $i=0,1$, even 'our' fourth-order perturbation calculation can be elaborated explicitly, which reduces the error to about 0.01% for any λ. For small λ it gives correct numerical coefficients up to λ^{4} terms, as it should.

1. Introduction and summary

The anharmonic oscillator model has played a tremendous role, because it is a most simple but nontrivial nonlinear problem. It occurs in the evolution of many branches of physics ranging from particle physics to molecular dynamics. For the relevance of this model to the various branches of physics we would like to refer to Hioe et al (1978, to be referred to as HMm). For this reason the Montroll group elaborated the detailed papers, Hioe et al (1978), Hioe and Montroll (1975), using a big computer facility. We will use these papers as a standard reference for comparison with our work, and will refer to their results as e.g. (HMm (1.18b)), meaning Hioe et al (1978), equation ($1.18 b$) etc.

Our approach to the problem consists of some kind of variational approximation; the 'variational' parameter α_{i} is adjusted for each value of i and λ with a special combination $y_{i}=6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1), \alpha_{i}$ is a root of (2.10). y_{i} is essentially 6Λ in the notation of нмм. In order to be applicable to more realistic problems, the method should be as simple as possible. Our method is simple enough, amounting to performing an appropriate scale transformation (or Bogoliubov transformation) corresponding to each given (λ, i). We decompose the canonical variables q and p into
† Permanent address, and after March 1983.
creation and annihilation operators by $q=\left(\alpha_{i} / 2 \omega\right)^{1 / 2}\left(b_{i}+b_{i}^{+}\right), \quad p=$ $i^{-1}\left(\omega / 2 \alpha_{i}\right)^{1 / 2}\left(b_{i}-b_{i}^{+}\right) . \quad \alpha_{i}=1$ corresponds to the 'usual' treatment. Expressing our total Hamiltonian through b_{i} and b_{i}^{+}, then after the performance of Wick ordering, the diagonal term with respect to $n_{i}=b_{i}^{+} b_{i}$ is defined as $H_{i}^{(0)}$ and the remaining nondiagonal term as $H_{i}^{(I)}$. The single 'variational' parameter α_{i} is determined such as to make $E_{i}^{(0)}$ obtained from $H_{i}^{(0)}$ an optimum, which will make $H_{i}^{(I)}$ small. $E_{i}^{(0)}$, obtained in this way, is given by the formula in the abstract, which covers fairly well all ranges of (i, λ). If we plot a graph of the energy levels using this formula, we get almost the same graph as given by (hmm figure 1). We cannot see any difference at this scale of the graphs. In order to see more clearly the accuracy of our results, we draw a graph of $R_{i}^{(0)}=E_{i}^{(0)} / E_{i}^{(e)}$ in figure 4, where i is the level number, (0) means our zeroth approximation results, and (e) means the exact values of hmm. In figure 4 we also draw $R_{i}^{(2)}=\left(E_{i}^{(0)}+E_{i}^{(2)}\right) / E_{i}^{(\text {() }}$, where (2) means 'our' second-order approximation results, which improves $R_{i}^{(0)}$ considerably.

Our $H_{i}^{(0)}$ is diagonal but nonlinear (containing n_{i}^{2}), and through our choice of α_{i} we extract out of the total Hamiltonian in a subtle way optimally nonlinear effects corresponding to each (i, λ). Our splitting into $H_{i}^{(0)}$ and $H_{i}^{(I)}$ is so differently and nicely done for each (i, λ) that, although our $H_{i}^{(I)}$ contains no small fixed parameter, its effects are always small for any range of (i, λ). Incidentally, through our choice of α_{i}, our $H_{i}^{(I)}$ have vanishing matrix elements $\langle 2| H_{0}^{(I)}|0\rangle$ and $\langle 3| H_{1}^{(I)}|1\rangle$, for any λ as will be shown in (5.2) and (5.4), which makes 'our' perturbation calculation especially simple for $i=0$ and $i=1$.

In § 2 we will explain our method of approximation sketched above, and $\S 3$ contains the results for 'our' lowest-order approximation. From $\S 4$ on, we will develop in a systematic way 'our' higher-order perturbation theory, treating $H_{i}^{(t)}$ as perturbation, which can be done, in principle, to any order. As we have emphasised above, $H_{l}^{(I)}$ does not contain any small fixed numerical coefficient, still effectively it is always small, as will be seen below. Section 4 contains 'our' second-order perturbation results $E_{i}^{(2)} \dagger$, which reduce to the 'usual' second-order perturbation theory in the special limiting case of small λ, while our formula (4.4) covers all ranges of (i, λ), including very large λ. It is fairly accurate also for the intermediate values of i or λ, as will be most clearly seen in figure 4 or table 4.

The cases $i=0$ and $i=1$ are especially simple, so we can even go to the fourth order of 'our' perturbation calculation. We do that in $\S 5$ and it reduces the error to within 0.01% for any λ, so that in figure $4 R_{0}^{(4)}$ and $R_{1}^{(4)}$ lie almost on the abscissa on this scale of graphs. For small λ, as shown in (5.16), they contain the well known usual perturbation coefficients up to the λ^{4} term correctly. But our general formulae (5.12) and (5.17) are valid for any λ, including $\lambda \rightarrow \infty$.

In $\S 6$ we discuss the small λ regime, based on 'our' second-order perturbation results (4.4) and arrive at (6.4), and, for large i with ($i \lambda$) $=\beta$ finite, at (6.5) which is equally good for small $\beta=\lambda i$ as the result of (HMM (1.18b)). (HMm (1.18b)) is not good for $\beta \geqslant 0.5$, while our (4.4) is good also for any β, as will be clearly seen in figure 5.

Section 7 contains a discussion of (4.4) for the large λ regime for $i \geqslant 2(i=0,1$ have already been discussed in §5). The results are (7.2), (7.3) and (7.4), whose

[^0]numerical accuracies are discussed in $\S 9$. Section 8 contains a discussion of (4.4) for $i \rightarrow \infty$, with finite large and small $\beta=i \lambda$, and the results are our equation (8.3), which covers any β values quite well, contrary to (HMm (1.18b)) which is valid only for small β. Section 9 gives some numerical results. For the states $i=0,1$, our fourth approximation results based on (5.12) and (5.17) are summarised in tables 1 and 2, for various intermediate λ. We see that our formulae give excellent results also for such an intermediate regime of λ. For states $i \geqslant 2$, our numerical estimate for intermediate values of λ is based on our second approximation formula (4.4). The errors, as compared with the exact values, can be most clearly seen in figure 4 . We summarise for $i=2,3,8$ the numerical results in table 4. The $i=8$ state is chosen as an example, for an intermediate i. As we will see below, almost all our calculations are algebraic; we never used integrations here, and only once differentiated in equation (2.7a). We reduced a difficult nonlinear differential equation's eigenvalue problem to an algebraic manipulation. Our most difficult task here is to solve the cubic equation (2.10). The calculations are really elementary, although for higher approximations the arithmetic becomes somewhat complicated. The numerical calculations are also very simple and almost all the numerical computation was done by the author on a desk computer.

Next we should mention something about the symmetry properties. As our total Hamiltonian has even parity (even function of p and q), any sensible approximation should not destroy this parity property. This means, in our case, that the state with $i=$ even (odd) should be an even (odd) state. Our approximation retains, of course, this symmetry property. So the $i=1$ state is the lowest state of the $i=$ odd states, which is guaranteed to be orthogonal to the $i=0$ state with even parity. This means that it is guaranteed that $E_{0}^{(0)} \geqslant E_{0}^{(\mathrm{e})}$ and $E_{1}^{(0)} \geqslant E_{1}^{(\mathrm{e})}$ due to the variational character of our zeroth-order approximation, but for other i and for higher approximations we have no guarantee whether our calculated values are larger or smaller than the exact values. (We will encounter this problem, for example, for $i=8$. We see from figure 4 that $R_{8}^{(0)}<1$ and $R_{8}^{(2)}>1$.)

Lastly we want to discuss our wavefunctions. The lowest-order wavefunction corresponding to the eigenvalue $E_{i}^{(0)}$ is given by (3.3). It is just the usual Hermite function, only scaled appropriately by our α_{i}. We have not given the corresponding wavefunction for $E_{i}^{(2)}$, but it is quite easily constructed explicitly, if necessary, by a standard perturbation procedure using $H_{i}^{(I)}$ as perturbation. Our states are not orthogonal to each other, because they are based on differently scaled Hermite functions.

2. The method of approximation

Our anharmonic oscillator is characterised by the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)+\lambda^{\prime} q^{4} \tag{2.1}
\end{equation*}
$$

We have chosen units in which $\hbar=m=1$. Let us substitute p and q by

$$
\begin{equation*}
q=(\alpha / 2 \omega)^{1 / 2}\left(b+b^{+}\right), \quad p=i^{-1}(\omega / 2 \alpha)^{1 / 2}\left(b-b^{+}\right), \quad\left[b, b^{+}\right]=1 \tag{2.2}
\end{equation*}
$$

where α is our characteristic variational parameter, which will play the central role in our approximation method and will be defined below. $\alpha=1$ leads to the well known creation and annihilation operators a and a^{+}of the simple harmonic oscillator. Inserting (2.2) into our Hamiltonian (2.1) and expressing H in terms of b and b^{+}, we
then arrange this into Wick's normal product ordering to obtain easily $H=H^{(0)}+H^{(J)}$,
$H^{(0)} / \omega=\left(1 / 4 \alpha+\frac{1}{4} \alpha+\frac{3}{4} \lambda \alpha^{2}\right)(2 n+1)+\frac{3}{2} \lambda \alpha^{2} n^{2}$,
$H^{(I)} / \omega=\left(-1 / 4 \alpha+\frac{1}{4} \alpha+\frac{3}{2} \lambda \alpha^{2}\right)\left(b^{2}+b^{+2}\right)+\frac{1}{4} \lambda \alpha^{2}\left(b^{4}+4 n b^{2}+4 b^{+2} n+b^{+4}\right)$,
where

$$
\begin{equation*}
n \equiv b^{+} b, \quad \lambda \equiv \lambda^{\prime} / \omega^{3}, \tag{2.4}
\end{equation*}
$$

$H^{(0)}$ is the diagonal part and $H^{(1)}$ is the nondiagonal part of the total H, with respect to n. We define as usual

$$
\begin{equation*}
|i\rangle \equiv(1 / \sqrt{i!})\left(b^{+}\right)^{i}|0\rangle \quad(i=1,2, \ldots) \quad b|0\rangle=0 \tag{2.5}
\end{equation*}
$$

and get

$$
\begin{equation*}
H^{(0)}|i\rangle=E_{i}^{(0)}(\alpha)|i\rangle \quad \text { and } \quad\langle i| H^{(I)}|i\rangle=0 \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{i}^{(0)}(\alpha) / \omega=\left(1 / 4 \alpha+\frac{1}{4} \alpha+\frac{3}{4} \lambda \alpha^{2}\right)(2 i+1)+\frac{3}{2} \lambda \alpha^{2} i^{2} \tag{2.7}
\end{equation*}
$$

and then

$$
\begin{equation*}
\partial E_{i}^{(0)}(\alpha) / \partial \alpha=\left(-1 / 4 \alpha^{2}+\frac{1}{4}+\frac{3}{2} \lambda \alpha\right)(2 i+1)+3 \lambda \alpha i^{2} . \tag{2.7a}
\end{equation*}
$$

Now we choose our α to optimise $E_{i}^{(0)}(\alpha)$, namely we define our α_{i} by

$$
\partial E_{i}^{(0)}(\alpha) / \partial \alpha=0 \rightarrow \alpha=\alpha_{i}
$$

so

$$
\begin{equation*}
\alpha_{i}^{3}\left[6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1)\right]+\alpha_{i}^{2}-1=0 . \tag{2.8}
\end{equation*}
$$

For states $i \geqslant 2$ this type of variational determination of α_{i} may be questionable. We can justify our choice of α_{i} in the following way. For our Hamiltonian H, the virial theorem requires

$$
\left\langle\frac{1}{2} p^{2}\right\rangle=\left\langle\frac{1}{2} q^{2}+2 \lambda q^{4}\right\rangle
$$

for any eigenstate of H. If we require this to be valid also for our approximate eigenstates $|i\rangle$, the above equation becomes

$$
(1 / 4 \alpha)(2 i+1)=\frac{1}{4} \alpha(2 i+1)+\frac{3}{2} \lambda \alpha^{2}\left(2 i^{2}+2 i+1\right)
$$

which is nothing else than (2.8).
Now define

$$
\begin{align*}
y_{i} & \equiv 6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1) \equiv 6 \bar{\Lambda}_{i}, \\
\bar{\Lambda}_{i} & \equiv \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1)=\left(i+\frac{1}{2}\right) \lambda\left[1+\frac{1}{4}\left(i+\frac{1}{2}\right)^{-2}\right] \\
& =\Lambda_{i}\left[1+\frac{1}{4}\left(i+\frac{1}{2}\right)^{-2}\right], \tag{2.9}\\
\Lambda_{i} & \equiv\left(i+\frac{1}{2}\right) \lambda .
\end{align*}
$$

Λ_{i} is the notation used in HMm. With this y_{i} our α_{i} is given by a solution of

$$
\begin{equation*}
y_{i} \alpha_{i}^{3}+\alpha_{i}^{2}-1=0 \tag{2.10}
\end{equation*}
$$

[^1]This equation determines our variational parameter α_{i} in terms of y_{i}, which is a special combination of λ and i (the level number). y_{i} is essentially $6 \Lambda_{i}$ of HMM, except for the factor $1+\frac{1}{4}\left(i+\frac{1}{2}\right)^{-2}$, which plays some role for small i, but is practically one for large i. In our approximation we choose α_{i} for each level i differently. For fixed i we have only one special expansion parameter y_{i}, which can be small or large, corresponding to small or large λ, and our lowest approximation result $E_{i}^{(0)}$ depends only on α_{i} (equation (2.11), see below) which covers all ranges of λ.

With this α_{i} our $E_{i}^{(0)}$ becomes

$$
E_{i}^{(0)}\left(\alpha_{i}\right)=\frac{1}{8}(2 i+1)\left(3 / \alpha_{i}+\alpha_{i}\right)
$$

or

$$
\varepsilon_{i}^{(0)} \equiv E_{i}^{(0)}(\alpha) /\left(i+\frac{1}{2}\right)=\frac{1}{4}\left(3 / \alpha_{i}+\alpha_{i}\right)
$$

where α_{i} is defined as a real positive solution of the cubic equation (2.10). Equation (2.10) has three real solutions for $27 y_{i}^{2}<4$. In this case we choose the positive root, which leads to $\alpha_{i} \rightarrow 1$ for $\lambda \rightarrow 0$, the correct usual perturbation calculation.

In summarising up to here, we have split our total H into a nonperturbed part $H_{i}^{(0)}$ and a perturbed part $H_{i}^{(I)}$, which are given by
$H_{i}^{(0)}=\left(1 / 4 \alpha_{i}+\frac{1}{4} \alpha_{i}+\frac{3}{4} \lambda \alpha_{i}^{2}\right)\left(2 n_{i}+1\right)+\frac{3}{2} \lambda \alpha_{i}^{2} n_{i}^{2}$,
$H_{i}^{(I)}=\left(-1 / 4 \alpha_{i}+\frac{1}{4} \alpha_{i}+\frac{3}{2} \lambda \alpha_{i}^{2}\right)\left(b_{i}^{2}+b_{i}^{+2}\right)+\lambda \alpha_{i}^{2}\left(n_{i} b_{i}^{2}+b_{i}^{+2} n_{i}\right)+\frac{1}{4} \lambda \alpha_{i}^{2}\left(b_{i}^{4}+b_{i}^{+4}\right)$
where $n_{i}=b_{i}^{+} b_{i}$ is still an operator. Our $H_{i}^{(0)}$ is diagonal but nonlinear (containing n_{i}^{2}). We separate our total H into different parts $H_{i}^{(0)}$ and $H_{i}^{(I)}$ for each level i. (α_{i} is different for different i, defined by (2.10).)

Our b_{i} and b_{i}^{+}are different for each level, and are given by
$b_{i}=\left(\omega / 2 \alpha_{i}\right)^{1 / 2} q+i\left(\alpha_{i} / 2 \omega\right)^{1 / 2} p=\frac{1}{2}\left[\left(\alpha_{i}^{-1 / 2}+\alpha_{i}^{1 / 2}\right) a+\left(\alpha_{i}^{-1 / 2}-\alpha_{i}^{1 / 2}\right) a^{+}\right]$
where a and a^{+}are the usual creation and annihilation operators for the free harmonic oscillator. b_{i}^{+}is the Hermitian conjugate of b_{i}. Thus $\left[b_{i}, b_{j}\right] \neq 0$ for $i \neq j$. Looking at (2.13), our method amounts to performing different Bogoliubov transformations for each i and $\lambda \dagger$.

In our approximation method we attack each level separately. For fixed i, α_{i} is still adjusted for different λ. Thus choosing our best α_{i} as a solution of (2.10), our method amounts to performing a perturbation procedure by treating $H_{i}^{(0)}$ as the unperturbed part and $H_{i}^{(I)}$ as perturbation. As we will see below, $H_{i}^{(I)}$ is always small compared with $H_{i}^{(0)}$, but does not contain any small parameter of fixed value, so that our method is valid for all ranges of $0<\lambda<\infty$ and $0 \leqslant i<\infty$, with one simple analytic formula.

3. The lowest-order approximation for arbitrary $\boldsymbol{\lambda}$ and \boldsymbol{i}

The lowest-order approximation is to neglect $H_{i}^{(1)}$ and retain only $H_{i}^{(0)}$. Then the results are already given in $\S 2$, namely

$$
\begin{equation*}
\varepsilon_{i}^{(0)} \equiv E_{i}^{(0)} /\left(i+\frac{1}{2}\right)=\frac{1}{4}\left(3 / \alpha_{i}+\alpha_{i}\right) \tag{3.1}
\end{equation*}
$$

[^2]where α_{i} is the positive real root of
\[

$$
\begin{equation*}
y_{i} \alpha_{i}^{3}+\alpha_{i}^{2}-1=0 \tag{3.2}
\end{equation*}
$$

\]

where

$$
y_{i}=6 \lambda\left[\left(2 i^{2}+2 i+1\right) /(2 i+1)\right] .
$$

We give $\varepsilon_{i}^{(0)}$ and α_{i} as a function of y_{i} in figures 1,2 and 3 . Figure 2 demonstrates the accuracy of our lowest-order result $\varepsilon_{i}^{(0)}$ for the small y_{i} region.

If we calculate energy levels for $i=0,1,2, \ldots, 8$ as functions of λ from (3.1), and plot a curve, then we obtain quite a similar graph to that in (hмm, figure 1), and we cannot see any difference at this scale of graphs. In order to see the errors of our approximation we give a graph of the ratio $R_{i}^{(0)}=E_{i}^{(0)} / E_{i}^{(\text {e })}(i=0,1,2,3$ and 8$)$ as a function of λ in figure 4 , where $E_{i}^{(0)}$ are our calculated values obtained from (3.1), and $E_{i}^{(\mathrm{e})}$ are the exact values given by Hioe and Montroll (1975). The superscript (0) means the lowest approximation values. In figure 4 we also give the values obtained by our second approximation shown by a dotted curve $R_{i}^{(2)}$ with superscript (2). As we will see from figure 4 , our $R_{i}^{(0)}$ has at most an error of 2% (for $i=0,1 ; \lambda \gg 1$)

Figure 1. Our lowest-order energy value $\varepsilon_{i}^{(0)}=E_{i}^{(0)} /\left(i+\frac{1}{2}\right)$ of (3.1) as a function of $y_{i}=6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1)$ on a logarithmic scale.

Figure 2. Our $\varepsilon_{i}^{(0)}$ of (3.1) for small $y_{\text {t }}$ and some exact values; $E_{i}^{(\mathrm{e})}$ (0.1) means $E_{i}^{(\mathrm{e})}$ for $\lambda=0.1$, for example.

Figure 3. Our characteristic variational parameter α_{t} as a function of $y_{i}=$ $6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1)$ on a logarithmic scale.

Figure 4. Ratio $R_{t}^{(\prime)}=\bar{E}_{i}^{(\prime)} / E_{t}^{(e)}$ as function of λ, where (j) represents the order of our approximation, and $E_{i}^{(e)}$ are the exact values, taken from Hioe and Montroll (1975).
and the error is usually less than $1 \%\left(0.99<R_{i}^{(0)}<1.01\right)$ for almost every value of i and λ. (As we will see in $\S 8$, this is true even for $i \gg 1$, namely in the wкb region.)

As our approach is variational, it is guaranteed that $R_{0}^{(0)}$ and $R_{1}^{(0)}$ are larger than 1 , while the $R_{i}^{(0)}(i \geqslant 2)$ are not necessarily larger than 1 , because our excited levels are not orthogonal to the lower levels. The fact that $R_{1}^{(0)}$ is larger than 1 comes from the symmetry property of our total H : since H is an even function of q and p, the ground state is an even function while the first excited state is an odd function, and our approximation does not destroy this symmetry.

The corresponding states are given by

$$
\left|i^{(0)}\right\rangle=(1 / \sqrt{i!})\left(b_{1}^{+}\right)|0\rangle .
$$

Thus the wavefunctions in the q-representation are the usual Hermite polynomials, but appropriately scaled by α_{i} :
$\psi_{i}^{(0)}(q) \equiv\left\langle q \mid i^{(0)}\right\rangle=\left(\frac{\omega}{\pi \alpha_{i}}\right)^{1 / 4} \frac{1}{\left(2^{i}!!\right)^{1 / 2}} H_{i}\left(\left(\frac{\omega}{\alpha_{i}}\right)^{1 / 2} q\right) \exp \left(-\frac{\omega}{2 \alpha_{i}} q^{2}\right)$.

4. The second-order perturbation due to $\boldsymbol{H}_{i}^{(I)}$ for arbitrary $\boldsymbol{\lambda}$ and \boldsymbol{i}

The first-order perturbation due to $H_{i}^{(I)}$ is zero, as was shown in (2.6): $\langle i| H_{i}^{(I)}|i\rangle=0$.
The second-order perturbation is given by

$$
\begin{align*}
E_{i}^{(2)}=\langle i| H_{i}^{(1)} & \left(E_{i}^{(0)}-H_{i}^{(0)}(n)\right)^{-1} H_{i}^{(I)}|i\rangle \\
= & (1 / i!)\left(\frac{1}{4} \lambda \alpha_{i}^{2}\right)^{2}\left[\langle 0| b^{i+4}\left(E_{i}^{(0)}-H_{i}^{(0)}(n=i+4)\right)^{-1}\left(b^{+}\right)^{i+4}|0\rangle\right. \\
& \left.+\langle 0| b^{i}\left(b^{+}\right)^{4}\left(E_{i}^{(0)}-H_{i}^{(0)}(n=i-4)\right)^{-1} b^{4}\left(b^{+}\right)^{i}|0\rangle\right] \\
& +(1 / i!)\left(-\left(4 \alpha_{i}\right)^{-1}+\frac{1}{4} \alpha_{i}+\frac{3}{2} \lambda \alpha_{i}^{2}+i \lambda \alpha_{i}^{2}\right)^{2} \\
& \times\langle 0| b^{i+2}\left(E_{i}^{(0)}-H_{i}^{(0)}(n=i+2)\right)^{-1}\left(b^{+}\right)^{i+2}|0\rangle \\
& +(1 / i!)\left(-\left(4 \alpha_{i}\right)^{-1}+\frac{1}{4} \alpha_{i}+\frac{3}{2} \lambda \alpha_{i}^{2}+(i-2) \lambda \alpha_{i}^{2}\right)^{2} \\
& \times\langle 0| b^{i}\left(b^{+}\right)^{2}\left(E_{i}^{(0)}-H_{i}^{(0)}(n=i-2)\right)^{-1} b^{2}\left(b^{+}\right)^{i}|0\rangle \\
= & \left(\frac{\lambda \alpha_{i}^{2}}{4}\right)^{2}\left(\frac{(i+4)(i+3)(i+2)(i+1)}{E_{i}^{(0)}-H_{i}^{(0)}(n=i+4)}+\frac{i(i-1)(i-2)(i-3)}{E_{i}^{(0)}-H_{i}^{(0)}(n=i-4)}\right)+\left(4 \alpha_{i}\right)^{-2} \\
& \times\left\{(i+2)(i+1)\left[-1+\alpha_{i}^{2}+2 \lambda \alpha_{i}^{3}(2 i+3)\right]^{2}\left(E_{i}^{(0)}-H_{i}^{(0)}(n=i+2)\right)^{-1}\right. \\
& \left.+i(i-1)\left[-1+\alpha_{i}^{2}+2 \lambda \alpha_{i}^{3}(2 i-1)\right]^{2}\left(E_{i}^{(0)}-H_{i}^{(0)}(n=i-2)\right)^{-1}\right\} . \tag{4.1}
\end{align*}
$$

Using the relation for α_{i} given by (2.10), and y_{i} given in (2.9), we obtain after some elementary algebra

$$
\begin{align*}
E_{i}^{(2)}=\left(\frac{1-\alpha_{i}^{2}}{\alpha_{i}}\right. & \left.\frac{1}{6\left(2 i^{2}+2 i+1\right)}\right)^{2} \\
& \times\left[\left(\frac{2 i+1}{4}\right)^{2}\left(\frac{(i+4)(i+3)(i+2)(i+1)}{E_{i}^{(0)}-H_{i}^{(0)}(n=i+4)}+\frac{i(i-1)(i-2)(i-3)}{E_{i}^{(0)}-H_{i}^{(0)}(n=i-4)}\right)\right. \\
& \left.+(i+2)(i+1) i(i-1)\left(\frac{i(i-1)}{E_{i}^{(0)}-H_{i}^{(0)}(n=i+2)}+\frac{(i+2)(i+1)}{E_{i}^{(0)}-H_{i}^{(0)}(n=i-2)}\right)\right] \tag{4.2}
\end{align*}
$$

while

$$
\begin{align*}
V_{i}(k) \equiv E_{i}^{(0)} & -H_{i}^{(0)}(n=i+k) \\
& =-\left(\frac{1}{4 \alpha_{i}}+\frac{\alpha_{i}}{4}+\frac{3 \lambda \alpha_{i}^{2}}{4}\right)(2 k)-\frac{3 \lambda \alpha_{i}^{2}}{2}\left[(i+k)^{2}-i^{2}\right] \\
& =-\frac{k}{4 \alpha_{i}} \frac{1}{\left(2 i^{2}+2 i+1\right)}\left[8 i^{2}+2 i(k+4)+(k+3)-(2 k i+k-1) \alpha_{i}^{2}\right] \tag{4.3}
\end{align*}
$$

(k can be negative also) and we finally get

$$
\begin{aligned}
& E_{i}^{(2)}=\left(\frac{1-\alpha_{i}^{2}}{6}\right)^{2} \frac{1}{\alpha_{i}\left(2 i^{2}+2 i+1\right)} \\
& \times\left[\left(\frac{2 i+1}{4}\right)^{2}\left(-\frac{(i+4)(i+3)(i+2)(i+1)}{8 i^{2}+16 i+7-\alpha_{i}^{2}(8 i+3)}+\frac{i(i-1)(i-2)(i-3)}{8 i^{2}-1+\alpha_{i}^{2}(8 i+5)}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +2(i+2)(i+1) i(i-1) \\
& \left.\times\left(-\frac{i(i-1)}{8 i^{2}+12 i+5-\alpha_{i}^{2}(4 i+1)}+\frac{(i+2)(i+1)}{8 i^{2}+4 i+1+\alpha_{i}^{2}(4 i+3)}\right)\right] . \tag{4.4}
\end{align*}
$$

Thus our second-order perturbation results are given by $\tilde{E}_{i}^{(2)}=E_{i}^{(0)}+E_{i}^{(2)}$, where $E_{i}^{(0)}$ is given by (3.1). This expression has some resemblance to (HMm (1.17)), because they are related by a similar calculational way. But they are not the same, and above all (HMM (1.17)) is valid only for small λ, while our results are valid for arbitrary λ. The two expressions deviate at about $\beta \sim 1$, as will be clearly seen from the graph of figure 5.

Figure 5. Comparison of various $\varepsilon_{i}=E_{i} /\left(i+\frac{1}{2}\right)$ for very large i, finite $\beta=i \lambda$. Equation (6.3) is good only for small β; (HMM, ($1.18 b$)) is better, but it becomes proportional to $y(\equiv 6 \beta)$ for large β. Our formulae for $\varepsilon_{i}^{(0)}((3.1))$ and $\varepsilon_{i}^{(2)}((8.3))$ deviate at about $\beta=1$ ($y=6$) from (HMM (1.18b)) and are valid for intermediate and large β.

As we see from the graphs of figure $4,\left|\left(\bar{E}_{i}^{(2)}-E_{i}^{(e)}\right) / E_{i}^{(e)}\right|$ are usually less than 0.01 for all ranges of λ and i, and furthermore $E_{i}^{(2)}$ has the correct sign and magnitude to reduce the error of $E_{i}^{(0)}$ by a factor of about $\frac{1}{5}$.

As we have already remarked in $\S 3$, we always have $R_{0}^{(0)} \geqslant 1$ and $R_{1}^{(0)} \geqslant 1$, while, as we may easily see from (4.4), if we put $i=0$ or $i=1$ there, $E_{0}^{(2)}<0$ and $E_{1}^{(2)}<0$, so our second approximation gives $R_{i}^{(0)} \equiv E_{i}^{(0)} / E_{i}^{(\mathrm{e})}>\bar{E}_{i}^{(2)} / E_{i}^{(\mathrm{e})} \equiv R_{i}^{(2)}$ for $i=0,1$. But from the beginning it is not guaranteed that $R_{i}^{(2)} \geqslant 1$ for $i=0,1$; only after numerical calculations did we find this to be the case.

Similarly for $i \geqslant 2$, generally speaking we are not sure whether $R_{i}^{(0)}$ is larger or smaller than 1 , and $R_{t}^{(2)}$ is nearer to 1 than $R_{i}^{(0)}$. Only after numerical calculations do we see that this is really the case for all ranges of λ and i (even for $i \rightarrow \infty$).

5. The fourth order perturbation due to $H_{i}^{(I)}$, for the ground ($i=0$) and first excited ($i=1$) states for arbitrary λ

We may continue 'our' perturbation calculation due to $H_{1}^{(I)}$ systematically to higher orders, but in full generality this would become much more complicated and the numerical improvements are expected to be quite small, which will be shown below
to be true. So we will concentrate in this section only on the ground and the first excited states ($i=0,1$), but still leave λ arbitrary.

The calculations of states with $i=0,1$ are especially simple, as can be seen in formula (4.4) of $\S 4$. In (4.4), for $i=0,1$, only the first term of the four terms in [...] survives, which originates from b^{4} and b^{+4} in $H_{0}^{(I)}$ and $H_{1}^{(I)}$. This is due to our choice of α_{0} and α_{1}, namely

$$
\left[-\left(4 \alpha_{0}\right)^{-1}+\frac{1}{4} \alpha_{0}+\frac{3}{2} \lambda \alpha_{0}^{2}\right]=0 \quad \text { for any } \lambda
$$

since $y_{0}=6 \lambda$ (see (2.9)). Then the coefficient of the $\left(b_{0}^{2}+b_{0}^{+2}\right)$ term of $H_{0}^{(I)}$ is zero. Hence our $H_{0}^{(I)}$ becomes simply

$$
\begin{align*}
H_{0}^{(I)} & =\frac{1}{4} \lambda \alpha_{0}^{2}\left(b_{0}^{4}+4 n_{0} b_{0}^{2}+4 b_{0}^{+2} n_{0}+b_{0}^{+4}\right) \\
& =\left[\left(1-\alpha_{0}^{2}\right) /\left(24 \alpha_{0}\right)\right]\left(b_{0}^{4}+4 n_{0} b_{0}^{2}+4 b_{0}^{+2}+b_{0}^{+4}\right) \tag{5.1}
\end{align*}
$$

Hence clearly

$$
\begin{equation*}
H_{0}^{(I)}|0\rangle=\frac{1}{4} \lambda \alpha_{0}^{2} b_{0}^{+4}|0\rangle \sim|4\rangle, \tag{5.2}
\end{equation*}
$$

i.e.

$$
\langle 2| H_{0}^{(I)}|0\rangle=\langle 0| H_{0}^{(I)}|2\rangle=0 \quad \text { for any } \lambda
$$

identically. This makes our calculation for the ground state ($i=0$) especially simple.
For the $i=1$ state we have $y_{1}=10 \lambda$ so we have

$$
\left[-\left(4 \alpha_{1}\right)^{-1}+\frac{1}{4} \alpha_{1}+\frac{3}{2} \lambda \alpha_{1}^{2}\right]=-\lambda \alpha_{1}^{2}
$$

and

$$
H_{1}^{(I)}=-\lambda \alpha_{1}^{2}\left(b_{1}^{2}+b_{1}^{+2}\right)+\frac{1}{4} \lambda \alpha_{1}^{2}\left(b_{1}^{4}+4 n_{1} b_{1}^{2}+4 b_{1}^{+2} n_{1}+b_{1}^{+4}\right)
$$

This time the coefficient of $\left(b_{1}^{2}+b_{1}^{+2}\right)$ does not vanish, but we can write

$$
\begin{align*}
H_{1}^{(I)} & =\left(\lambda \alpha_{1}^{2} / 4\right)\left[b_{1}^{4}+\left(b_{1}^{+}\right)^{4}+4\left(n_{1}-1\right) b_{1}^{2}+4 b_{1}^{+2}\left(n_{1}-1\right)\right] \\
& =\left[\left(1-\alpha_{1}^{2}\right) / 40 \alpha_{1}\right]\left[b_{1}^{4}+\left(b_{1}^{+}\right)^{4}+4\left(n_{1}-1\right) b_{1}^{2}+4 b_{1}^{+2}\left(n_{1}-1\right)\right] \tag{5.3}
\end{align*}
$$

and we see

$$
b_{1}^{+2}\left(n_{1}-1\right)|1\rangle=0
$$

so that

$$
H_{1}^{(I)}|1\rangle=\left(\lambda \alpha_{1}^{2} / 4\right)\left(b_{1}^{+}\right)^{4}|1\rangle \sim|5\rangle
$$

and therefore

$$
\begin{equation*}
\langle 3| H_{1}^{(I)}|1\rangle=\langle 1| H_{1}^{(I)}|3\rangle=0 \quad \text { for any } \lambda \tag{5.4}
\end{equation*}
$$

The first excited state, $i=1$, is also simple, which is the lowest state with odd parity.
For states $i \geqslant 2$, the situation is much more complicated as can be seen already from the second-order calculation of $\S 4$ and formula (4.4).

The properties (5.2) and (5.4) guarantee that the third-order perturbations are zero, since

$$
\begin{equation*}
\langle 0| H_{0}^{(I)} H_{0}^{(I)} H_{0}^{(I)}|0\rangle \sim\langle 4| H_{0}^{(I)}|4\rangle=0, \quad\langle 1| H_{1}^{(I)} H_{1}^{(I)} H_{1}^{(I)}|1\rangle \sim\langle 5| H_{1}^{(I)}|5\rangle=0 \tag{5.5}
\end{equation*}
$$

On the other hand this is generally not the case for $i \geqslant 2$, as for example

$$
\begin{equation*}
\langle 2| H_{2}^{(I)} H_{2}^{(I)} H_{2}^{(I)}|2\rangle \sim\langle 2| H_{2}^{(I)} H_{2}^{(I)}|0\rangle \sim\langle 2| H_{2}^{(I)}|4\rangle \neq 0 \tag{5.6}
\end{equation*}
$$

By the same reasoning, for the states $i=0,1$ the fifth-order perturbations are not zero, as for example

$$
\langle 0| H_{0}^{(I)} H_{0}^{(I)} H_{0}^{(I)} H_{0}^{(I)} H_{0}^{(I)}|0\rangle \sim\langle 4| H_{0}^{(I)} H_{0}^{(I)} H_{0}^{(I)}|4\rangle \sim\langle 8| H_{0}^{(I)}|6\rangle \neq 0
$$

since $H_{0}^{(I)}$ contains $b_{0}^{+2} n_{0}$, which brings $|4\rangle \rightarrow|6\rangle$.
With these preliminary remarks let us now begin our fourth-order perturbation calculation for $i=0$ and $i=1$. For $i=0,1$ we have

$$
\begin{align*}
& H_{0}^{(0)}\left(n_{0}\right)=\left(4 \alpha_{0}\right)^{-1}\left[\left(3+\alpha_{0}^{2}\right)\left(n_{0}+\frac{1}{2}\right)+\left(1-\alpha_{0}^{2}\right) n_{0}^{2}\right], \tag{5.7}\\
& H_{1}^{(0)}\left(n_{1}\right)=\left(20 \alpha_{1}\right)^{-1}\left[\left(13+7 \alpha_{1}^{2}\right)\left(n_{1}+\frac{1}{2}\right)+3\left(1-\alpha_{1}^{2}\right) n_{1}^{2}\right], \tag{5.8}
\end{align*}
$$

and, as in (4.3),

$$
\begin{align*}
& V_{i}(k) \equiv E_{i}^{(0)}-H_{i}^{(0)}(n=i+k)=H_{i}^{(0)}(n=i)-H_{i}^{(0)}(n=i+k), \\
& V_{0}(k)=-\left(k / 4 \alpha_{0}\right)\left[3+k-\alpha_{0}^{2}(k-1)\right], \tag{5.9}\\
& V_{1}(k)=-\left(k / 20 \alpha_{1}\right)\left[19+3 k-\alpha_{i}^{2}(3 k-1)\right] . \tag{5.10}
\end{align*}
$$

We will explicitly carry out the calculation for $i=0$, but for $i=1$ we will state only the results.

The standard perturbation theory gives us

$$
\begin{aligned}
E_{0}^{(4)}=\langle 0| H_{0}^{(I)} & \left(E_{0}^{(0)}-H_{0}^{(0)}\right)^{-1}\left[H_{0}^{(I)} P\left(E_{0}^{(0)}-H_{0}^{(0)}\right)^{-1} H_{0}^{(I)}\right. \\
& \left.-\langle 0| H_{0}^{(I)}\left(E_{0}^{(0)}-H_{0}^{(0)}\right)^{-1} H_{0}^{(I)}|0\rangle\right]\left(E_{0}^{(0)}-H_{0}^{(0)}\right)^{-1} H_{0}^{(I)}|0\rangle
\end{aligned}
$$

where

$$
P \equiv 1-|0\rangle\langle 0|
$$

is the projection operator onto the non $|0\rangle$ states. From (5.2) we get

$$
\begin{align*}
E_{0}^{(4)}=\mid\langle 0| & \left.H_{0}^{(I)}|4\rangle\right|^{2}\left(V_{0}(4)\right)^{-2}\left[\langle 4| H_{0}^{(I)} P\left(E_{0}^{(0)}-H_{0}^{(0)}\right)^{-1} H_{0}^{(I)}|4\rangle-E_{0}^{(2)}\right) \\
& \left.\left.=\left|\langle 0| H_{0}^{(I)}\right| 4\right\rangle\left.\left.\right|^{2}\left(V_{0}(4)\right)^{-2}\left(\sum_{k=2,6,8}\left|\langle 4| H_{0}^{(I)}\right| k\right\rangle\right|^{2}\left(V_{0}(k)\right)^{-1}-E_{0}^{(2)}\right) \tag{5.11}
\end{align*}
$$

where $E_{0}^{(2)}$ is given by (4.4) with $i=0$, namely

$$
\left.E_{0}^{(2)}=\left|\langle 0| H_{0}^{(I)}\right| 4\right\rangle\left.\right|^{2}\left(V_{0}(4)\right)^{-1},
$$

in this notation. $V_{0}(k)$ is given in (5.9) and

$$
\langle 0| H_{0}^{(I)}|4\rangle=(1 / \sqrt{4!})\left[\left(1-\alpha_{0}^{2}\right) / 24 \alpha_{0}\right]\langle 0| b_{0}^{4} b_{0}^{+4}|0\rangle=\sqrt{4!}\left[\left(1-\alpha_{0}^{2}\right) / 24 \alpha_{0}\right]
$$

etc. So after some calculation we arrive at

$$
\begin{equation*}
E_{0}^{(4)}=-\frac{\left(1-\alpha_{0}^{2}\right)^{4}}{72 \alpha_{0}} \frac{1}{\left(7-3 \alpha_{0}^{2}\right)^{2}}\left(\frac{8}{5-\alpha_{0}^{2}}+\frac{80}{3\left(9-5 \alpha_{0}^{2}\right)}+\frac{35}{8\left(11-7 \alpha_{0}^{2}\right)}-\frac{1}{8\left(7-3 \alpha_{0}^{2}\right)}\right) . \tag{5.11a}
\end{equation*}
$$

So our fourth-order final result for $i=0$ and arbitrary λ is given by

$$
\bar{E}_{0}^{(4)}=E_{0}^{(0)}+E_{0}^{(2)}+E_{0}^{(4)}
$$

where $E_{0}^{(4)}$ is given by (5.11a) and

$$
\begin{align*}
& E_{0}^{(0)}=\frac{1}{8}\left(3 / \alpha_{0}+\alpha_{0}\right), \tag{5.12}\\
& E_{0}^{(2)}=-\left[\left(1-\alpha_{0}^{2}\right)^{2} / 24 \alpha_{0}\right]\left(7-3 \alpha_{0}^{2}\right)^{-1}
\end{align*}
$$

and α_{0} is the positive real root of

$$
6 \lambda \alpha_{0}^{3}+\alpha_{0}^{2}-1=0
$$

This formula covers all ranges of λ, and the worst case $\lambda \rightarrow \infty$ gives only a 0.01% error compared with the exact numerical results obtained in Hioe and Montroll (1975). As can be seen from our figure 4 , if we tolerated a maximum error of 0.4%, then the much simpler formula $E_{0}^{(0)}+E_{0}^{(2)}$ of $\S 4$ is sufficient for our purposes. And even our extremely simple formula $E_{0}^{(0)}$ covers all ranges of λ within a maximum error of 2%, as we can clearly see from figure 4. A more detailed numerical comparison in the intermediate λ region will be given in table 1 .

Let us first discuss the case $\lambda \gg 1$. We get for the leading terms

$$
\begin{equation*}
\bar{E}_{4}^{(0)}=E_{0}^{(0)}+E_{0}^{(2)}+E_{0}^{(4)}=0.6680582 \lambda^{1 / 3}+0.143468 \lambda^{-1 / 3}+\ldots \tag{5.13}
\end{equation*}
$$

This should be compared with the exact values (cf HMm , table 1)

$$
E_{0}^{(\mathrm{e})}=0.6679826 \lambda^{1 / 3}+0.14367 \lambda^{-1 / 3}+\ldots
$$

Next let us discuss the case of λ being small. For λ small our α_{0} is given by

$$
\begin{equation*}
\alpha_{0}=1-3 \lambda+\frac{5}{2}(3 \lambda)^{2}-8(3 \lambda)^{3}+\frac{231}{8}(3 \lambda)^{4}+\ldots \tag{5.14}
\end{equation*}
$$

and our $H_{0}^{(I)}$ contains as a factor $\lambda \alpha_{0}^{2}$ (see (5.1)). If we perform the l th order of 'our' perturbation theory, we neglect only terms of order λ^{l+1} so that our formula should give the correct usual perturbation result up to order λ^{l}. This means, our $E_{0}^{(0)}$ gives the correct λ^{0} and λ^{1} coefficients (because $E_{0}^{(1)}=0$), $E_{0}^{(0)}+E_{0}^{(2)}$ goes up to λ^{3} (because $E_{0}^{(3)}=0$), $E_{0}^{(0)}+E_{0}^{(2)}+E_{0}^{(4)}$ gives the correct coefficients up to λ^{4} (because $E_{0}^{(5)} \neq 0$). We will show that this is really the case, and this fact will also guarantee that we are on the right track. If we systematically expand our formulae for small λ, using (5.14), we get

$$
\begin{align*}
& E_{0}^{(0)}=\frac{1}{2}+\frac{1}{4}(3 \lambda)-\frac{1}{4}(3 \lambda)^{2}+\frac{1}{2}(3 \lambda)^{3}-\frac{21}{16}(3 \lambda)^{4}+\ldots, \\
& E_{0}^{(2)}=-\frac{1}{24}(3 \lambda)^{2}+\frac{13}{48}(3 \lambda)^{3}-\frac{49}{32}(3 \lambda)^{4}+\ldots, \tag{5.15}\\
& E_{0}^{(4)}=-\frac{467}{3456}(3 \lambda)^{4}+\ldots, \\
& E_{0}^{(4)}=\frac{1}{2}+\frac{3}{4} \lambda-\frac{21}{8} \lambda^{2}+\frac{333}{16} \lambda^{3}-\frac{30885}{128} \lambda^{4}+\ldots, \tag{5.16}
\end{align*}
$$

which reproduce the well known correct numerical coefficients given for example by Bender and $\mathrm{Wu}(1969,1973)$ up to λ, λ^{3} and λ^{4}, respectively, for $E_{0}^{(0)}, \bar{E}_{0}^{(2)}$ and $\bar{E}_{0}^{(4)}$, as was argued above. This means that our formulae cover also the weak coupling ($\lambda \ll 1$) region quite satisfactorily, as they should. But our formula (5.12) covers all ranges of λ with quite small error. As was already remarked above, since $E_{0}^{(5)}$ is not zero, we cannot get the correct λ^{5} coefficient if we expand (5.12). The fact that our $E_{0}^{(0)}+E_{0}^{(2)}$ gives the correct λ^{3} coefficient is due to the special circumstance that $E_{0}^{(3)}=0$.

Now, for the first excited state $(i=1)$, we have instead of (5.12):

$$
\begin{equation*}
\bar{E}_{1}^{(4)}=E_{1}^{(0)}+E_{1}^{(2)}+E_{1}^{(4)} \tag{5.17}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
E_{1}^{(0)}=\frac{3}{8}\left(3 / \alpha_{1}+\alpha_{1}\right), \\
E_{1}^{(2)}=-\left[3\left(1-\alpha_{1}^{2}\right)^{2} / 8 \alpha_{1}\right]\left(31-11 \alpha_{1}^{2}\right)^{-1}, \\
E_{1}^{(4)}=-\frac{\left(1-\alpha_{1}^{2}\right)^{4}}{\alpha_{1}} \frac{3}{\left(31-11 \alpha_{1}^{2}\right)^{2}} \tag{5.17}\\
\quad \times\left(\frac{1}{5-\alpha_{1}^{2}}+\frac{14}{37-17 \alpha_{1}^{2}}+\frac{189}{64\left(43-23 \alpha_{1}^{2}\right)}-\frac{1}{512\left(31-11 \alpha_{1}^{2}\right)}\right),
\end{array}\right\}
$$

and α_{i} is the positive real root of

$$
10 \lambda \alpha_{1}^{3}+\alpha_{1}^{2}-1=0
$$

This formula covers all ranges of λ, and like \bar{E}_{0}^{4}, even for $\lambda \rightarrow \infty$ the error is 0.013%, while $E_{0}^{(0)}+E_{0}^{(2)}$ has at most an error of 0.17%, and the simplest expression $E_{1}^{(0)}$ gives an error of 1.25% only (see figure 4 and table 2).

For $\lambda \gg 1$ we obtain instead of (5.13):
$\bar{E}_{1}^{(4)}=E_{1}^{(0)}+E_{1}^{(2)}+E_{1}^{(4)}=2.3933259 \lambda^{1 / 3}+0.3578943 \lambda^{-1 / 3}+\ldots$.
This should be compared with the exact values (cf нMm, table 1)

$$
E_{1}^{(e)}=2.39364402 \lambda^{1 / 3}+0.35780 \lambda^{-1 / 3}+\ldots .
$$

For small λ our α_{1} is given by

$$
\begin{equation*}
\alpha_{1}=1-5 \lambda+\frac{5}{2}(5 \lambda)^{2}-8(5 \lambda)^{3}+\frac{231}{8}(5 \lambda)^{4}+\ldots \tag{5.19}
\end{equation*}
$$

and we get

$$
\begin{align*}
& E_{1}^{(0)}=\frac{3}{2}+\frac{3}{4}(5 \lambda)-\frac{3}{4}(5 \lambda)^{2}+\frac{3}{2}(5 \lambda)^{3}-\frac{63}{16}(5 \lambda)^{4}+\ldots, \\
& E_{1}^{(2)}=-\frac{3}{40}(5 \lambda)^{2}+\frac{183}{400}(5 \lambda)^{3}-\frac{2193}{4000}(5 \lambda)^{4}+\ldots, \tag{5.20}\\
& E_{1}^{(4)}=-\frac{33717}{256000}(5 \lambda)^{4}+\ldots,
\end{align*}
$$

and therefore

$$
\begin{equation*}
\bar{E}_{1}^{(4)}=\frac{3}{2}+\frac{15}{4} \lambda-\frac{165}{8} \lambda^{2}+\frac{3915}{16} \lambda^{3}-\frac{5910345}{2048} \lambda^{4}+\ldots . \tag{5.21}
\end{equation*}
$$

We believe these to be also the correct coefficients and the discussion given for $i=0$ is also valid here, since $E_{1}^{(3)}=0$ and $E_{1}^{(5)} \neq 0$.

6. The small- $\boldsymbol{\lambda}$ regime for higher excited states $(i \geqslant 2)$

As the calculation of perturbations due to $H_{i}^{(I)}$ higher than the third order becomes quite complicated for $i \geqslant 2$, we will be content with our second-order perturbation formulae (3.1), (3.2) and (4.4).

For small λ the solution of (3.2) is given by

$$
\begin{equation*}
\alpha_{i}=1-\frac{1}{2} y_{i}+\frac{5}{2}\left(\frac{1}{2} y_{i}\right)^{2}+\ldots . \tag{6.1}
\end{equation*}
$$

We see that $\left(1-\alpha_{i}^{2}\right)$ is proportional to y_{i}, or λ, so the factor $\left(1-\alpha_{i}^{2}\right)^{2}$ in front of $E_{i}^{(2)}$ is proportional to λ^{2}. Hence for small λ we retain only terms proportional to λ in
the rest of $E_{i}^{(2)}$. We can thus rewrite $E_{i}^{(2)}$ in the following form:

$$
\begin{align*}
E_{i}^{(2)} \approx-\lambda^{2}\left(\frac{1}{\alpha_{i}^{2}}\right) & {\left[\frac{(i+4)(i+3)(i+2)(i+1)}{16[4+(2 i+5) 6 \lambda]}-\frac{i(i-1)(i-2)(i-3)}{16[4+(2 i-3) 6 \lambda]}\right.} \\
& \left.+\frac{(i+2)(i+1) i(i-1)}{(2 i+1)^{2}}\left(\frac{i(i-1)}{2+(2 i+3) 3 \lambda}-\frac{(i+2)(i+1)}{2+(2 i-1) 3 \lambda}\right)\right] \quad(\lambda \ll 1) \tag{6.2}
\end{align*}
$$

Together with $E_{i}^{(0)}$ for small λ

$$
\begin{equation*}
E_{i}^{(0)} \approx\left(i+\frac{1}{2}\right)+\frac{3}{4}[1+2 i(i+1)] \lambda-\frac{9}{4} \frac{\left(2 i^{2}+2 i+1\right)^{2}}{2 i+1} \lambda^{2}+\ldots \tag{6.3}
\end{equation*}
$$

we obtain a formula for ($E_{i}^{(0)}+E_{i}^{(2)}$), which resembles the formula (нмм (1.17)) if we put $1 / \alpha_{i}^{2}$ equal to 1 . But $1 / \alpha_{i}^{2}$ is equal to 1 plus terms proportional to λ, so that it is a little arbitrary to keep λ otherwise and not in α_{i}. Still, (6.2) is not a consistent expansion in powers of λ. If we neglect consistently all terms proportional to λ^{3}, then we get

$$
E_{i}^{(2)} \approx\left[\left(4 i^{4}+8 i^{3}-25 i^{2}-29 i-3\right) / 8(2 i+1)\right] \lambda^{2}+\ldots
$$

and finally we obtain
$E_{i}^{(0)}+E_{i}^{(2)} \approx\left(i+\frac{1}{2}\right)+\frac{3}{4}\left(2 i^{2}+2 i+1\right) \lambda-\frac{1}{8}\left(34 i^{3}+51 i^{2}+59 i+21\right) \lambda^{2}+\ldots$.
This agrees with the results for $i=0,1$ in $\S 5$ up to order λ^{2}, as it should.
Now if we let $i \rightarrow \infty$, but keep $\lambda i=\beta$ finite and small, we get

$$
\begin{equation*}
\left(E_{i}^{(0)}+E_{i}^{(2)}\right) /\left(i+\frac{1}{2}\right) \approx 1+\frac{3}{2} \beta-\frac{17}{4} \beta^{2}+\ldots . \tag{6.5}
\end{equation*}
$$

This agrees with the formula (нмм ($1.18 b$)) for small β. We retained terms up to λ^{2}, so that in the coefficient of β^{2}, β should be put to zero. We will give the formulae valid for any β in $\S 8$. The formula ($\operatorname{Hmм}(1.18 b)$) is not valid for $\beta \geqslant 1$, as will be seen in $\S 8$, while our formula (8.3) is valid also for large β.

7. The large $-\lambda$ regime for higher excited states $(i \geqslant 2)$

For $i=0,1$, we already gave a fourth-order calculation in $\S 5$. We use here also our second-order formulae (3.1), (3.2) and (4.4), and expand them for large λ. In this case α_{i} is given by

$$
\begin{equation*}
\alpha_{i} \approx\left(y_{i}\right)^{-1 / 3}\left(1-\frac{1}{3} y_{i}^{-2 / 3}+\frac{1}{9} y_{i}^{-4 / 3}+\ldots\right), \quad y_{i}=6 \lambda\left[\left(2 i^{2}+2 i+1\right) /(2 i+1)\right] . \tag{7.1}
\end{equation*}
$$

So, if we expand in powers of $y_{i}^{-1 / 3}$ (or $\lambda^{-1 / 3}$), and express our result in the form

$$
\begin{equation*}
E_{i}^{(0)}+E_{i}^{(2)} \approx \lambda^{1 / 3}\left(\varepsilon_{i}^{y(2)}+\alpha_{i}^{y(2)} \lambda^{-2 / 3}+\beta_{i}^{y(2)} \lambda^{-4 / 3}+\ldots\right) \tag{7.2}
\end{equation*}
$$

as in HMM , our formula for $\beta_{i}^{y(2)}$ becomes too elaborate, so we will only give our expression for ε_{1}^{y} and α_{i}^{y};

$$
\begin{aligned}
& \varepsilon_{i}^{y(2)}=\left(\frac{6\left(2 i^{2}+2 i+1\right)}{2 i+1}\right)^{1 / 3}\left\{\frac{3}{4}\left(i+\frac{1}{2}\right)+\frac{1}{36\left(2 i^{2}+2 i+1\right)}\right. \\
& \times\left[\left(\frac{2 i+1}{4}\right)^{2}\left(-\frac{(i+4)(i+3)(i+2)(i+1)}{8 i^{2}+16 i+7}+\frac{i(i-1)(i-2)(i-3)}{8 i^{2}-1}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
&\left.\left.+2(i+2)(i+1) i(i-1)\left(-\frac{i(i-1)}{8 i^{2}+12 i+5}+\frac{(i+2)(i+1)}{8 i^{2}+4 i+1}\right)\right]\right\} \tag{7.3}\\
& \alpha_{i}^{y(2)}=\left(\frac{6\left(2 i^{2}+2 i+1\right)}{2 i+1}\right)^{-1 / 3}\left[\frac{1}{2}\left(i+\frac{1}{2}\right)-\frac{1}{36\left(2 i^{2}+2 i+1\right)}\right. \\
& \times\left\{(\frac { 2 i + 1 } { 4 }) ^ { 2 } \left[\frac{(i+4)(i+3)(i+2)(i+1)}{8 i^{2}+16 i+7}\left(\frac{8 i+3}{8 i^{2}+16 i+7}-\frac{5}{3}\right)\right.\right. \\
&\left.+\frac{i(i-1)(i-2)(i-3)}{8 i^{2}-1}\left(\frac{8 i+5}{8 i^{2}-1}+\frac{5}{3}\right)\right] \\
&+2(i+2)(i+1) i(i-1)\left[\frac{i(i-1)}{8 i^{2}+12 i+5}\left(\frac{4 i+1}{8 i^{2}+12 i+5}-\frac{5}{3}\right)\right. \\
&\left.\left.\left.+\frac{(i+2)(i+1)}{8 i^{2}+4 i+1}\left(\frac{4 i+3}{8 i^{2}+4 i+1}+\frac{5}{3}\right)\right]\right\}\right] . \tag{7.4}
\end{align*}
$$

The first terms of (7.3) and (7.4) come from $E_{i}^{(0)}$, and will be called $\varepsilon_{i}^{y(0)}$ and $\alpha_{i}^{y(0)}$ respectively.

This formula can be compared with the corresponding numerical values given in нмm, tables 1 and 2 , which will be done in $\S 9$ and is summarised in our table 4. Contrary to the case of small λ in $\S 6$, where 'our' perturbation theory contains the 'usual' perturbation theory, here our higher-order contributions $E_{i}^{(3)}, E_{i}^{(4)} \ldots$ always bring a small numerical correction also for the coefficients of the leading terms (proportional to $\lambda^{1 / 3}, \lambda^{-1 / 3} \ldots$).

8. The large- i regime for arbitrary finite $i \lambda$

For large i, it is more convenient to use

$$
\begin{equation*}
j=i+\frac{1}{2} \tag{8.1}
\end{equation*}
$$

as variable. Then our second-order perturbation results (3.1) and (4.4) have a more symmetrical form:

$$
\begin{align*}
& \varepsilon_{i}^{(0)} \equiv E_{i}^{(0)} / j=\frac{1}{4}\left(3 / \alpha_{i}+\alpha_{i}\right) \\
\frac{E_{t}^{(2)}}{j}=\left(\frac{1-\alpha_{i}^{2}}{6}\right)^{2} & \frac{1}{2 \alpha_{i}\left(j^{2}+\frac{1}{4}\right)} \\
& \times\left[\left(\frac{j}{2}\right)^{2}\left(-\frac{\left(j^{2}+4 j+\frac{7}{4}\right)\left(j^{2}+4 j+\frac{15}{4}\right)}{8 j^{2}+8 j+1-\alpha_{i}^{2}(8 j-1)}+\frac{\left(j^{2}-4 j+\frac{7}{4}\right)\left(j^{2}-4 j+\frac{15}{4}\right)}{8 j^{2}-8 j+1+\alpha_{i}^{2}(8 j+1)}\right)\right. \\
& +2\left(j^{2}-\frac{1}{4}\right)\left(j^{2}-\frac{9}{4}\right)\left(-\frac{\left(j^{2}-2 j+\frac{3}{4}\right)}{8 j^{2}+4 j+1-\alpha_{i}^{2}(4 j-1)}\right. \\
& \left.\left.+\frac{\left(j^{2}+2 j+\frac{3}{4}\right)}{8 j^{2}-4 j+1+\alpha_{i}^{2}(4 j+1)}\right)\right] \tag{8.2}
\end{align*}
$$

where

$$
y_{i} \alpha_{i}^{3}+\alpha_{i}^{2}-1=0, \quad y_{i}=6 \lambda\left(\frac{2 i^{2}+2 i+1}{2 i+1}\right)=6 \lambda j\left(1+\frac{1}{4 j^{2}}\right) .
$$

After some algebra we arrive at

$$
\begin{array}{r}
\frac{E_{i}^{(2)}}{j}=\left(\frac{1-\alpha_{i}^{2}}{12}\right)^{2} \frac{1}{\alpha_{i}}\left(\frac{4 j^{2}}{4 j^{2}+1}\right)\left(\frac{32\left(j^{2}-1 / 16 j^{2}\right)\left(j^{2}-\frac{9}{4}\right)\left(5-\alpha_{i}^{2}\right)}{\left(8 j^{2}+1+\alpha_{i}^{2}\right)^{2}-16 j^{2}\left(1-\alpha_{i}^{2}\right)^{2}}\right. \\
\left.-\frac{8 j^{4}\left(7+\alpha_{i}^{2}\right)+4 j^{2}\left(1+45 \alpha_{i}^{2}\right)-\frac{1}{2}\left(61-149 \alpha_{i}^{2}\right)}{\left(8 j^{2}+1+\alpha_{i}^{2}\right)^{2}-64 j^{2}\left(1-\alpha_{i}^{2}\right)^{2}}\right) .
\end{array}
$$

This is still valid for any $j\left(=i+\frac{1}{2}\right)$. Now let $j \rightarrow \infty$, keeping $j \lambda \equiv \Lambda$ finite, large or small. For any i and λ, α_{i} is always between 0 and 1 , as can be clearly seen from figure 3 . Then we get
$\frac{E_{i}^{(2)}}{j} \approx \frac{1}{8 \alpha_{i}}\left(\frac{1-\alpha_{i}^{2}}{12}\right)^{2}\left[\left(13-5 \alpha_{i}^{2}\right)-\frac{1}{4 j^{2}}\left(216+85 \alpha_{i}^{2}-17 \alpha_{i}^{4}+8 \alpha_{i}^{6}\right)+\ldots\right] . \dagger$
So our formula for large j is given by

$$
\begin{equation*}
\varepsilon_{i}^{(2)}=\frac{E_{i}^{(0)}+E_{i}^{(2)}}{\left(i+\frac{1}{2}\right)}=\frac{1}{4}\left(\frac{3}{\alpha_{i}}+\alpha_{i}\right)+\frac{1}{8 \alpha_{i}}\left(\frac{1-\alpha_{i}^{2}}{12}\right)^{2}\left(13-5 \alpha_{i}^{2}\right) . \tag{8.3}
\end{equation*}
$$

This is our formula for large i and any finite $\Lambda=\left(i+\frac{1}{2}\right) \lambda . \quad \alpha_{i}$ is given as usual, which covers quite well large and small Λ. For small $\Lambda\left(\sim y_{i}\right)$ we use (6.1), and inserting this into (8.3) we get (6.3), as we should. For large $\Lambda\left(\sim y_{i}\right)$ we use (7.1); inserting this into (8.3) and expanding up to the power $\Lambda^{-2 / 3}$ we get

$$
\begin{align*}
E_{i}^{(0)}+E_{i}^{(2)} & \approx \lambda^{1 / 3}\left[\frac{(6)^{1 / 3}}{8}\left(\frac{877}{144}\right)\left(i+\frac{1}{2}\right)\left(i+\frac{1}{2}+\frac{1}{4\left(i+\frac{1}{2}\right)}\right)^{1 / 3}\right. \\
& \left.+\frac{1}{8(6)^{1 / 3}}\left(\frac{103}{27}\right)\left(i+\frac{1}{2}\right)\left(i+\frac{1}{2}+\frac{1}{4\left(i+\frac{1}{2}\right)}\right)^{-1 / 3} \lambda^{-2 / 3}+\ldots\right] \\
& \approx \lambda^{1 / 3}\left[1.383346\left(i+\frac{1}{2}+\frac{1}{16\left(i+\frac{1}{2}\right)}\right)^{4 / 3}+0.262422\left(i+\frac{1}{2}\right)^{2 / 3} \lambda^{-2 / 3}+\ldots\right] . \tag{8.4}
\end{align*}
$$

This should be compared with the more accurate value (Hioe and Montroll 1975 (IV. 16a))
$E_{i}^{(\mathrm{e})}=\lambda^{1 / 3}\left[1.376507\left(i+\frac{1}{2}+\frac{0.0265}{i+\frac{1}{2}}\right)^{4 / 3}+0.268055\left(i+\frac{1}{2}\right)^{2 / 3} \lambda^{-2 / 3}+\ldots\right]$.
Except that we get $\frac{1}{16}=0.0625$ in place of 0.0265 in the first term, the agreement here is also satisfactory, especially in view of the fact that we used only 'our' second-order perturbation formula.

Thus our formula (8.3) for large i covers really well all ranges of finite $\Lambda=\left(i+\frac{1}{2}\right) \lambda$. The formula (нмм (1.18b)) covers only small Λ, whereas our formula (8.3) (which gives (6.3) in this case) is equally well suited and, as we have shown in figure 5 , our

[^3]Table 1. The ground state energies $E_{o}^{(j)}$, equation (5.12).

λ	α_{0}	$E_{0}^{(0)}$	$-E_{0}^{(2)}$	$-E_{0}^{(4)}$	$\bar{E}_{0}^{(2)}$	$\bar{E}_{0}^{(4)}$	$E_{0}^{(c)}$
0.002	0.994088	0.501491	0.000001	0.000000	0.501490	0.501490	0.501490
0.010	0.972055	0.507288	0.000031	0.000000	0.507257	0.507257	0.507256
0.10	0.818869	0.560308	0.001107	0.000058	0.559201	0.559143	0.559146
0.5	0.598194	0.701661	0.004847	0.000365	0.638337	0.637972	0.637992
1.0	0.500000	0.812500	0.007500	0.001255	0.805000	0.803745	0.803771
2.0	0.410704	0.964405	0.010797	0.002050	0.953609	0.951560	0.951568
50	0.148277	2.547585	0.038763	0.008898	2.508822	2.499924	2.499709
200	0.093827	4.008446	0.062564	0.014580	3.945882	2.931302	3.930331
1000	0.054977	6.82791	0.107757	0.025277	6.720154	6.694877	6.694221
8000	0.027509	13.63534	0.216122	0.050826	13.41922	13.36839	13.36691
20000	0.020271	18.50187	0.293451	0.069039	18.20842	18.13938	18.13723

Table 2. The first excited state energies $E_{1}^{(j)}$, equation (5.17).

λ	α_{1}	$E_{1}^{(0)}$	$-E_{1}^{(2)}$	$-E_{1}^{(4)}$	$\bar{E}_{1}^{(2)}$	$\bar{E}_{1}^{(4)}$	$E_{1}^{(c)}$
0.002	0.990242	1.507427	0.000007	0.000000	1.507420	1.507420	1.507419
0.01	0.955401	1.535792	0.000142	0.000000	1.535649	1.535649	1.535648
0.10	0.754878	1.773387	0.003717	0.000186	1.769670	1.769484	1.769503
0.5	0.525166	2.339117	0.013391	0.001457	2.325726	2.324269	2.324406
1.0	0.433105	2.759937	0.019749	0.002516	2.740188	2.737672	2.737892
2.0	0.352469	3.323946	0.027536	0.003876	3.296411	3.292535	3.292868
50	0.125329	9.023373	0.094359	0.015390	8.929014	8.913624	8.915096
200	0.079204	14.23353	0.151155	0.025039	14.08238	14.05734	14.05923
1000	0.046383	24.27197	0.259880	0.043274	24.01209	24.96881	23.97221
8000	0.023204	48.49172	0.520862	0.086907	47.97085	47.88395	47.89077
20000	0.017098	65.80358	0.707157	0.118028	65.09642	64.97839	64.98668

Comparison of our calculated values with the exact values $E^{(c)}$, taken from table IIA of Hioe and Montroll (1975). $E_{i}^{(1)}$ is our j th-order calculation, and $\bar{E}_{i}^{(2)}=E_{i}^{(0)}+E_{i}^{(2)}, \bar{E}_{i}^{(4)}=E_{i}^{(0)}+E_{i}^{(2)}+E_{i}^{(4)}(i=0,1)$.
Table 3. E_{2}, E_{3}, E_{8}, equation (4.4). $E_{i}^{(0)}=\left(i+\frac{1}{2}\right) \varepsilon_{i}^{(0)}, \bar{E}_{i}^{(2)}=\left(i+\frac{1}{2}\right)\left(\varepsilon_{i}^{(0)}+\varepsilon_{i}^{(2)}\right)=\left(i+\frac{1}{2}\right) \bar{\varepsilon}_{i}^{(2)}, E_{i}^{(e)}=\left(i+\frac{1}{2}\right) \varepsilon_{i}^{(e)} \cdot E_{i}^{(0)}\left(\bar{E}_{i}^{(2)}\right)$ are our calculated owest (with second-order correction) energy levels, from (3.1), (3.2) ((4.4)). $E_{i}^{(e)}$ are exact values taken from tables IIA, IIB, IIC of Hioe and Montroll (1975)

λ	$\varepsilon_{2}^{(0)}$	$\tilde{E}_{2}^{(2)}$	$\varepsilon_{2}^{(e)}$	$\varepsilon_{3}^{(0)}$	$\tilde{\varepsilon}_{3}^{(2)}$	$\varepsilon_{3}^{(\text {(e) }}$	$\varepsilon_{8}^{(0)}$	$\bar{\varepsilon}_{8}^{(2)}$	$\varepsilon_{8}^{(e)}$
0.002	1.007682	1.007681	1.007681	1.010497	1.010501	1.010498	1.024397	1.024451	1.024449
0.006	1.022396	1.022390	1.022389	1.030305	1.030343	1.030339	1.067594	1.067961	1.067924
0.01	1.036354	1.036343	1.036338	1.048799	1.049775	1.048884	1.105504	1.106310	1.106199
0.05	1.149601	1.149729	1.149592	1.192308	1.193240	1.193450	1.362349	1.367747	1.366444
0.1	1.255298	1.255850	1.255450	1.320552	1.323360	1.322538	1.567474	1.577016	1.573996
0.3	1.536962	1.539270	1.537913	1.651281	1.658635	1.656164	2.059991	2.079055	2.073229
0.5	1.729408	1.733072	1.731010	1.872784	1.883163	1.879543	2.376580	2.401351	2.393552
0.7	1.882003	1.886750	1.885312	2.047043	2.059733	2.055219	2.621785	2.650804	2.641529
1	2.068951	2.075005	2.071717	2.259407	2.274828	2.269258	2.917599	2.951587	2.940582
2	2.517306	2.526375	2.521552	2.765877	2.787501	2.779235	3.614370	3.659794	3.644692
50	6.958084	6.992653	6.974796	7.723295	7.797861	7.769327	10.29475	10.43847	10.38992
200	10.99965	11.05571	11.02057	12.21466	12.33464	12.28722	16.30700	16.53669	16.45887
1000	18.76000	18.85676	18.80694	20.84986	21.05620	20.97689	27.85878	28.25269	28.11901
8000	37.49001	37.68422	37.58424	41.67348	42.08710	41.92729	55.69919	56.48792	56.21832
20000	50.87529	51.13902	51.00360	56.56014	57.12177	56.89861	75.59208	76.66275	76.29592

Table 4. $\quad E_{1}^{(0)}, \bar{E}_{i}^{(2)}$ for $\lambda \rightarrow \infty$, (7.3), (7.4). Equations (7.3) and (7.4) are valid for large λ. $E_{1}^{(0)} / \omega=$
$\lambda^{1 / 3}\left(\varepsilon_{1}^{y(0)}+\alpha^{y(0)} \lambda^{-2 / 3}+\ldots\right) \ldots$ is our lowest-order result. $\bar{E}_{i}^{(2)} / \omega=\lambda^{1 / 3}\left(\varepsilon_{i}^{y(2)}+\alpha_{1}^{y(2)} \lambda^{-2 / 3}+\ldots\right.$)... with our second-order corrections. $\varepsilon_{1}^{(c)}$ and $\alpha_{1}^{(c)}$ are the corresponding exact values, taken from tables 1 and 2 of $\mathbf{H M M}$. The author is indebted to C B Lang and L Mathelitsch for computational aid in obtaining this table.

	$E_{1}^{y(0)}$	$\epsilon_{1}^{y(2)}$	$\varepsilon_{\mathrm{t}}{ }^{(\text {e) }}$	$\alpha_{i}^{\gamma(0)} /\left(i+\frac{1}{2}\right)^{+2 / 3}$	$\alpha_{i}^{p(2)} /\left(i+\frac{1}{2}\right)^{2 / 3}$	$\alpha_{i}^{(\mathrm{c})} /\left(i+\frac{1}{2}\right)^{2 / 3}$
0	0.6814202	0.6706040	0.6679863	0.21840	0.22483	0.22806
1	2.423739	2.397677	2.393644	0.26566	0.27129	0.27305
2	4.684999	4.709304	4.696795	0.27159	0.26522	0.26816
3	7.291111	7.363548	7.335730	0.27331	0.26379	0.26820
4	10.166496	10.287822	10.244309	0.27404	0.26324	0.26813
5	13.267428	13.439319	13.379337	0.27441	0.26296	0.26810
6	16.564699	16.789097	16.711890	0.27462	0.26281	0.26808
7	20.037121	20.316011	20.220850	0.27475	0.26271	0.26808
8	23.668476	24.003803	23.889994	0.27484	0.26265	0.26807
9	27.445866	27.839509	27.706394	0.27491	0.26260	0.26807
10	31.358742	31.812501	31.659457	0.27495	0.26257	0.26806
100)	1.36285	1.38335	1.376507	0.27516	0.26242	0.268055
101 \}	$\times\left(i+\frac{1}{2}\right)^{-4 / 3}$	$\times\left(i+\frac{1}{2}\right)^{-4 / 3}$	$\times\left(i+\frac{1}{2}\right)^{-4 / 3}$	0.27516	0.26242	0.268055

formula (8.3) and (нмM (1.18b)) deviate near $\Lambda \sim 1$, as expected. Our formula also covers the intermediate Λ region well and connects smoothly with the correct result for large Λ.

9. Intermediate regime of i and λ. Numerical results

For intermediate magnitudes of i and λ we must return to formula (3.1) for our lowest order, and (4.4) for our second-order corrected results. First, for $i=0$, we obtain from our fourth-order formula (5.12) the numerical results summarised in table 1. For this calculation we still need only a desk computer. For $i=1$, from the corresponding formula (5.17), we obtain the results of table 2 . As will be seen the maximal errors (in the case of large λ) are less than 0.012% and 0.013%, respectively.

For the states with $i \neq 0,1$ we must be content with the much more inaccurate formula (4.4). We have listed as examples the lowest- ((3.1)) and second-order ((4.4)) results for $i=2,3$ and 8 in table 3 . The accuracy of our approximation procedure can be most clearly seen from figure 4 , where we plot the ratio of our results to the exact values as a function of λ. We see that in general $E_{i}^{(0)}<E_{i}^{(e)}<\bar{E}_{i}^{(2)}=E_{i}^{(0)}+E_{i}^{(2)}$, and $\left|R_{i}^{(2)}-1\right|=\left|\left(\bar{E}_{i}^{(2)}-E_{i}^{(\mathrm{e})}\right) / E_{i}^{(\mathrm{e})}\right|$ are much smaller than $\left|R_{i}^{(0)}-1\right|=\left|\left(E_{i}^{(0)}-E_{i}^{(\mathrm{e})}\right) / E_{i}^{(\mathrm{e})}\right|$ for any i.

This means 'our' second-order perturbation calculations improve 'our' lowest-order results essentially, for all ranges of λ. In table 4 we have summarised our calculated $E_{i}^{(0)}$ and $\bar{E}_{i}^{(2)}$ for the limiting case of large λ (equations (7.2), (7.3), (7.4)), and even for this case we see that the agreement is satisfactory.

10. Concluding remarks and discussion

As we have seen, our method and the required numerical calculations are extremely simple; they contain only one adjustable parameter α_{i} for given i and λ in the special combination $y_{i}=6 \lambda\left(2 i^{2}+2 i+1\right) /(2 i+1)$. We see that the largest error occurs at $\lambda \rightarrow \infty$ and $i=0$. The other extreme case, $i \rightarrow \infty$, is less inaccurate. And even for the ($\lambda \rightarrow \infty$, $i=0$) case 'our' fourth-order perturbation reduces the error to 0.01%. From these numerical results we are quite certain that if we calculate $E_{i}^{(3)}$ and $E_{i}^{(4)}$ also for $i \geqslant 2$, then everything is expected to agree within, say, about 0.01%.

As our method is simple enough, we may apply our method also to a pair of coupled oscillators with quartic coupling, as discussed in HMm. We have to introduce two parameters α_{1} and α_{2} for each oscillator. Our preliminary calculations show that our approach is also successful in this case. We will discuss these problems in a forthcoming paper.

Acknowledgments

It is a great pleasure for the author to thank H Mitter, H Latal, K Baumann, P Kocevar and the members of the Theoretical Physics Institute of the University of Graz, where the author was a visiting professor for $1982 / 83$, for their warm hospitality, interest and encouragement. The financial support of the Austrian Ministry of Science and Research, which made his stay there possible, is appreciated.

References

Bender C M and Wu T T 1969 Phys. Rev. 1841231

- 1973 Phys. Rev. D 71620

Hioe F T, MacMillen D and Montroll E W 1978 Phys. Rep. 43305
Hioe F T and Montroll E W 1975 J. Math. Phys. 161945

[^0]: \dagger We use the notational convention $E_{i}^{(\prime)}$, where i is the number of the energy level, and (j) is the order of 'our' perturbation theory. Thus, e.g., $E_{0}^{(4)}$ is the fourth-order correction of the zeroth state. We also use the convention $\bar{E}_{t}^{(2)}=E_{i}^{(0)}+E_{i}^{(2)}, \bar{E}_{1}^{(t)}=E_{1}^{(0)}+E_{i}^{(2)}+E_{1}^{(4)}, R_{1}^{(1)}=\bar{E}_{i}^{(j)} / E_{i}^{(e)}$, where $E_{t}^{(\mathrm{e})}$ are the exact values of нмм.

[^1]: \dagger From here on we put $\omega=1$, without loss of generality.

[^2]: † I am indebted to H Mitter for pointing out this fact.

[^3]: \dagger Now we neglect the $\left(1 / 4 j^{2}\right)$ term. In view of the large numerical coefficient one may be afraid that this could be dangerous for some range of finite $\Lambda=j \lambda$. As we have assumed j large and Λ finite, small $\Lambda\left(\alpha_{1} \rightarrow 1\right)$ means j exceedingly large, so that the $1 / 4 j^{2}$ term can be safely neglected in spite of its large numerical coefficient. And for large $\Lambda\left(\alpha_{1} \rightarrow 0\right)$ we neglected $216 / 4 j^{2}$ in comparison with 13 , which is also all right for, say, $j>10$ because $E_{l}^{(2)}$ itself is only a small correction to $E_{l}^{(0)}$.

