
Quantum theory of anharmonic oscillators-a variational and systematic general approximation

method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 345

(http://iopscience.iop.org/0305-4470/17/2/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 17 (1984) 345-365. Printed in Great Britain 
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systematic general approximation method 
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Institut fur Theoretische Physik, der Universitat Graz, Austria and Physics Department, 
College of General Education, Kyoto University, Kyoto 606, Japant 
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Abstract. This is an investigation of the energy levels and wavefunctions of an anharmonic 
oscillator characterised by the potential i w Z q 2  + A q 4 .  As a lowest-order approximation an 
extremely simple formula for energy levels, E:’’ = ( i + i ) i ( 3 / a ,  +a,), is derived ( i  being 
the quantum number of the energy level), which covers any ( A ,  i ) .  at is the real positive 
rootofacubicequation: y , a ? + c r f - l = O , w i t h  y , = 6 A ( 2 i 2 + 2 i + 1 ) / ( 2 i + 1 ) .  Thisformula 
reproduces the exact energy levels within an error of about 1 %  for any ( A ,  i) (the worst 
case is 2% for i = 0,  A +a). Systematically higher orders of ‘our’ perturbation theory are 
developed, which contains the ‘usual’ perturbation theory for the limiting case of small A, 
but ‘our’ perturbation theory is valid for any (i, A ) .  ‘Our’ second-order perturbation theory 
reduces the errors of our lowest-order results by a factor of about f in general. Various 
ranges (large, intermediate, small) of (i, A )  are investigated and compared with the exact 
values obtained by the Montroll group. For i = 0 , 1 ,  even ‘our’ fourth-order perturbation 
calculation can be elaborated explicitly, which reduces the error to  about 0.01 YO for any 
A. For small A it gives correct numerical coefficients up to Aa terms, as it should. 

1. Introduction and summary 

The anharmonic oscillator model has played a tremendous role, because it is a most 
simple but nontrivial nonlinear problem. It occurs in the evolution of many branches 
of physics ranging from particle physics to molecular dynamics. For the relevance of 
this model to the various branches of physics we would like to refer to Hioe et a1 
(1978, to be referred to as HMM). For this reason the Montroll group elaborated the 
detailed papers, Hioe et a1 (1978), Hioe and Montroll (1975), using a big computer 
facility. We will use these papers as a standard reference for comparison with our 
work, and will refer to their results as e.g. (HMM ( l . l8b) ) ,  meaning Hioe et a1 (1978), 
equation (1.18 b) etc. 

Our approach to the problem consists of some kind of variational approximation; 
the ‘variational’ parameter a, is adjusted for each value of i and A with a special 
combination y ,=6A(2 i2+2 i+1) / (2 i+ l ) .  a, is a root of (2.10). y, is essentially 611 
in the notation of HMM. In order to be applicable to more realistic problems, the 
method should be as simple as possible. Our method is simple enough, amounting to 
performing an appropriate scale transformation (or Bogoliubov transformation) corres- 
ponding to each given ( A ,  i ) .  We decompose the canonical variables q and p into 

t Permanent address, and after March 1983. 
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creation and annihilation operators by 4 = (a;/2w)’/’( bi + b:),  p = 
i - ’ ( w / 2 ~ ~ ~ ) ’ / ~ ( b ; -  b:). a,  = 1 corresponds to the ‘usual’ treatment. Expressing our 
total Hamiltonian through bi and b t ,  then after the performance of Wick ordering, 
the diagonal term with respect to n, = b:bi is defined as Hio’ and the remaining 
nondiagonal term as Hi‘). The  single ‘variational’ parameter ai is determined such as 
to make E!”’ obtained from Hio’ an optimum, which will make HI” small. E:”, 
obtained in this way, is given by the formula in the abstract, which covers fairly well 
all ranges of (i, A ) .  If we plot a graph of the energy levels using this formula, we get 
almost the same graph as given by (HMM figure 1).  We cannot see any difference at 
this scale of the graphs. In order to see more clearly the accuracy of our results, we 
draw a graph of R!” = E:’’ /E‘” l in figure 4,  where i is the level number, (0) means 
our zeroth approximation results, and (e) means the exact values of HMM. In figure 
4 we also draw R:” = (El” + E i 2 ’ ) / E i e ) ,  where (2)  means ‘our’ second-order approxi- 
mation results, which improves R f a )  considerably. 

Our  Hio’ is diagonal but nonlinear (containing nf,), and through our choice of ai 
we extract out of the total Hamiltonian in a subtle way optimally nonlinear effects 
corresponding to each (i, A ) .  Our  splitting into HIo’ and H:” is so differently and 
nicely done for each (i, A )  that, although our Hi’’ contains no small fixed parameter, 
its effects are always small for any range of (i ,  A ) .  Incidentally, through our choice of 
ai, our HI’’ have vanishing matrix elements (21Hhf’/0) and (31H\f)11), for any A as 
will be shown in (5.2) and (5.4), which makes ‘our’ perturbation calculation especially 
simple for i = 0 and i = 1. 

In § 2 we will explain our method of approximation sketched above, and § 3 contains 
the results for ‘our’ lowest-order approximation. From P 4 on, we will develop in a 
systematic way ‘our’ higher-order perturbation theory, treating Hi” as perturbation, 
which can be done, in principle, to any order. As we have emphasised above, HI” 
does nor contain any small fixed numerical coefficient, still effectively it is always small, 
as will be seen below. Section 4 contains ‘our’ second-order perturbation results E:’’ t ,  
which reduce to the ‘usual’ second-order perturbation theory in the special limiting 
case of small A ,  while our formula (4.4) covers all ranges of (i, A ) ,  including very large 
A. It is fairly accurate also for the intermediate values of i or  A, as will be most clearly 
seen in figure 4 or table 4. 

The  cases i = 0 and i = 1 are especially simple, so we can even go to  the fourth 
order of ‘our’ perturbation calculation. W e  d o  that in § 5 and it reduces the error to 
within O.0lo/o for any A ,  so that in figure 4 RIP’ and RY’ lie almost on the abscissa 
on this scale of graphs. For small A,  as shown in (5.16), they contain the well known 
usual perturbation coefficients up to  the A 4  term correctly. But our general formulae 
(5.12) and (5.17) are valid for any A ,  including A + 00. 

In § 6 we discuss the small A regime, based on ‘our’ second-order perturbation 
results (4.4) and arrive at (6.4), and, for large i with (iA) = p finite, at (6.5) which is 
equally good for small p = A i  as the result of ( H M M  (1.18b)). (HMM (1.18b)) is not 
good for p a O . 5 ,  while our (4.4) is good also for any p, as will be clearly seen in 
figure 5. 

Section 7 contains a discussion of (4.4) for the large A regime for i 2 2 ( i  = 0, 1 
have already been discussed in § 5 ) .  The results are (7.2), (7.3) and (7.4), whose 

t We use the notational convention €!’I ,  where i is the number of the energy level, and ( j )  is the order 
of ‘our’ perturbation theory. Thus, e.g., E!:’ is the fourth-order correction of the zeroth state. We also 

values of HMM. 

use the convention E:*’  =El”’ + E ‘ 2 ’  I ?  E“’ I = E:”’ +E:*’  +E:‘’ * ,  R”’ = E!”/E:“,  where Eir’ are the exact 
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numerical accuracies a re  discussed in 0 9. Section 8 contains a discussion of (4.4) for 
i + 00, with finite large and small p = iA ,  and the results a re  our  equation (8.3), which 
covers any ,8 values quite well, contrary to (HMM (1.18b)) which is valid only for small 
p. Section 9 gives some numerical results. For the states i = 0, 1, our fourth approxima- 
tion results based on (5 .12 )  and (5.17) a re  summarised in tables 1 and 2 ,  for various 
intermediate A.  We  see that our formulae give excellent results also for such an  
intermediate regime of A. For states i 3 2 ,  our  numerical estimate for intermediate 
values of A is based on our  second approximation formula (4.4). The  errors, as 
compared with the exact values, can be most clearly seen in figure 4. We  summarise 
for i = 2 ,  3 , 8  the numerical results in table 4. The  i = 8 state is chosen as an example, 
for an  intermediate i. As we will see below, almost all our calculations a re  algebraic; 
we never used integrations here, and only once differentiated in equation ( 2 . 7 ~ ) .  W e  
reduced a difficult nonlinear differential equation’s eigenvalue problem to  an algebraic 
manipulation. Our  most difficult task here is t o  solve the cubic equation (2.10). The  
calculations a re  really elementary, although for higher approximations the arithmetic 
becomes somewhat complicated. The  numerical calculations a re  also very simple and 
almost all the numerical computation was done by the author on a desk computer. 

Next we should mention something about the symmetry properties. As our total 
Hamiltonian has even parity (even function of p and q ) ,  any sensible approximation 
should not destroy this parity property. This means, in our case, that the state with 
i =even (odd) should be an  even (odd) state. Our  approximation retains, of course, 
this symmetry property. So the i = 1 state is the lowest state of the  i = o d d  states, 
which is guaranteed to  be orthogonal to the i = 0 state with even parity. This means 
that it is guaranteed that E r ’  3 Er’  and Ey’  3 E p )  due to the variational character 
of our  zeroth-order approximation, but for other i and for higher approximations we 
have no guarantee whether our calculated values a re  larger or  smaller than the exact 
values. (We  will encounter this problem, for example, for i = 8. W e  see from figure 
4 that R‘,“’ < 1 and Ri” > 1 . )  

Lastly we want to discuss our  wavefunctions. The lowest-order wavefunction 
corresponding to the eigenvalue E:’’ is given by (3.3). It is just the usual Hermite 
function, only scaled appropriately by our a,. We have not given the corresponding 
wavefunction for E:’’, but it is quite easily constructed explicitly, if necessary, by a 
standard perturbation procedure using HI’) as perturbation. O u r  states a re  not 
orthogonal t o  each other, because they a re  based on differently scaled Hermite 
functions. 

2. The method of approximation 

Our  anharmonic oscillator is characterised by the Hamiltonian 

H = + ( P ’ + W ~ ~ ~ ) + A ’ ~ ~ .  ( 2 . 1 )  

q =  ( a / 2 ~ ) ” ~ ( b + b ’ ) ,  p = i-’(w/2a)’’’(b - b+),  [b,  b+]= 1, (2 .2 )  

We have chosen units in which h = m = 1. Let us substitute p and q by 

where CY is our characteristic variational parameter, which will play the  central role in 
our approximation method and will be defined below. CY = 1 leads to  the well known 
creation and annihilation operators a and a+ of the simple harmonic oscillator. 
Inserting (2 .2 )  into our Hamiltonian (2 .1 )  and expressing H in terms of b and b’, we 
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then arrange this into Wick's normal product ordering to obtain easily H = H'o'+H''), 

H'O'/w = ( 1 / 4 a  +aa +2Aa2)(2n + 1 )  + $ A a 2 n 2 ,  

H'" /w  = ( -  1 / 4 a  +aa +$Aa2)(b2+ b+2)+aAa2(b4+4nb2+4b'2n + b+4),  (2.3) 

where 

n = b'b, A = A ' / w 3 ,  (2 .4)  

li)= ( l / ~ ~ ) ( b ' ) ' I O )  ( i  = 1 , 2 , .  . .) blO) = 0 (2 .5)  

H(O) is the diagonal part and H"' is the nondiagonal part of the total H,  with respect 
to n. We define as usual 

where 

E I o ' ( a ) / w  = ( 1 / 4 a + a a + ~ A a 2 ) ( 2 i + 1 ) + $ A a 2 i 2  (2 .7) t  

and then 

dElo' (a ) / i Ia  = ( -  1/4a2+$+$Aa)(2 i+ 1)+3Aai2. ( 2 . 7 a )  

Now we choose our a to optimise EIo ' (a) .  namely we define our a ,  by 

aE;O'(a)/aa=O+a=a, 

so 

a : [ 6 A ( 2 i 2 + 2 i + l ) / ( 2 i + l ) ] + a f  -1 = O .  

For states i 3 2 this type of variational determination of a, may be questionable. 
We can justify our choice of a, in the following way. For our Hamiltonian H, the 
virial theorem requires 

( $ p 2 )  = (&42 + 2Aq4) 

for any eigenstate of H. If we require this to be valid also for our approximate 
eigenstates I i ) ,  the above equation becomes 

( 1 / 4 a ) ( 2 i  + 1) = $ a ( 2 i +  1 )  +iAa2(2i2+2i+ 1 )  

which is nothing else than (2 .8) .  
Now define 

y , = 6 A ( 2 i 2 + 2 i + 1 ) / ( 2 i + 1 ) ~ 6 6 ; i , ,  

6;i, A (2 i2+ 2i + 1 ) / ( 2 i  + 1 )  = ( i  + $ ) A [  1 +a( i +4)-2] 
(2.9) 

= A l [ l  +a( i+i ) -2] ,  

A ,  = ( i+$)A.  

A, is the notation used in HMM. With this y l  our a, is given by a solution of 

y,a; + a f - 1 = 0. (2.10) 

t From here on we put w = 1, without loss of generality 
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This equation determines our variational parameter a, in terms of y,, which is a special 
combinLtion of A and i (the level number). y ,  is essentially 6Al  of H ~ M ,  except for 
the factor 1 + a ( i + $ 2 ,  which plays some role for small i ,  but is practically one for 
large i. In our approximation we choose a, for each level i differently. For fixed i we 
have only one special expansion parameter y,, which can be small or large, corresponding 
to small or large A, and our lowest approximation result E!'' depends only on a ,  
(equation (2 .11 ) ,  see below) which covers all ranges of A. 

With this a, our E:'' becomes 

(2 .11 )  

where a, is defined as a real positive solution of the cubic equation (2 .10 ) .  Equation 
( 2 . 1 0 )  has three real solutions for 2 7 y f  <4. In this case we choose the positive root, 
which leads to a, + 1 for A + 0, the correct usual perturbation calculation. 

In summarising up to  here, we have split our total H into a nonperturbed part 
HI"' and a perturbed part H: ' ) ,  which are given by 

HIo' = ( 1 / 4 c u , + ~ a , + ~ h a f ) ( 2 n , + l ) + ~ A a f n f ,  
( 2 . 1 2 )  

where n, = b:b, is still an operator. Our H:"' is diagonal but nonlinear (containing 
n;). We separate our total H into different parts HIo' and HI" for each level i .  ( a ,  
is different for different i ,  defined by ( 2 . 1 0 ) . )  

b, = ( ~ / 2 a , ) ' / ~ q + i ( a , / 2 w ) ' / ' p = t [ ( a ; ' / ~  + a ! / 2 ) a + ( a ; 1 ' 2  (2 .13 )  

where a and U +  are the usual creation and annihilation operators for the free harmonic 
oscillator. b: is the Hermitian conjugate of b,. Thus [b,, b,] # 0 for i # j. Looking at 
( 2 . 1 3 ) ,  our method amounts to performing different Bogoliubov transformations for 
each i and A t .  

In our approximation method we attack each level separately. For fixed i ,  a, is 
still adjusted for different A. Thus choosing our best a, as a solution of ( 2 . 1 0 ) ,  our 
method amounts to performing a perturbation procedure by treating H!" as the 
unperturbed part and H! ' )  as perturbation. As we will see below, Hj" is always small 
compared with HjO', but does not contain any small parameter of fixed value, so that 
our method is valid for all ranges of 0 < A < CO and 0 i < 00, with one simple analytic 
formula. 

H"' , = ( - 1/4a, +{a,  +$ha:) (  bf + bT2)  + A a f  (n ,b f  + bT2n,) +ahat (b: + bT4) 

Our b, and b: are different for each level, and are given by 

3. The lowest-order approximation for arbitrary A and i 

The lowest-order approximation is to neglect HI" and retain only Hj"'. Then the 
results are already given in 5 2,  namely 

I ( 3 . 1 )  , / ( i + t) = a( 3/ ai + a ,  ) & ( O )  ~ E'"' 

t I am indebted to H Mitter for pointing out this fact. 



350 K Yamazaki 

where ai is the positive real root of 

y i a ;  + a: - 1 = 0 

where 

yi = 6A[(2i2+2i+ 1 ) / (2 i+  l)]. 

(3.2) 

We give E!"' and a, as a function of y, in figures 1 , 2  and 3. Figure 2 demonstrates 
the accuracy of our lowest-order result E ! ' )  for the small y,  region. 

If we calculate energy levels for i =0 ,  1 , 2 , .  . . , 8 as functions of A from (3.1), and 
plot a curve, then we obtain quite a similar graph to that in (HMM, figure l ) ,  and we 
cannot see any difference at this scale of graphs. In order to see the errors of our 
approximation we give a graph of the ratio RI" =EI") /Ele)  ( i = O ,  1 ,2 ,  3 and 8) as 
a function of A in figure 4, where E!') are our calculated values obtained from (3.1), 
and E:" are the exact values given by Hioe and Montroll (1975). The superscript (0) 
means the lowest approximation values. In figure 4 we also give the values obtained 
by our second approximation shown by a dotted curve R12' with superscript (2).  As 
we will see from figure 4, our RIo' has at most an error of 2% (for i - 0 ,  1; A >> 1) 

U, 

Figure 1. Our lowest-order energy value E:"' =El"' /( i+f) of (3.1) as a function of 
y , = 6 A ( 2 i 2 + 2 i + 1 ) / ( 2 i + l )  on a logarithmic scale. 

0 5  10 15 20 2 5  
Y 

Figure 2. Our E:" '  of (3.1) for small y, and some exact values: Eje' (0.1) means Eje' for 
A = 0.1, for example. 
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Figure 3. Our characteristic variational parameter a, as a function of yt = 
6 A ( 2 i 2 + 2 i + 1 ) / ( 2 i + l )  on a logarithmic scale. 

t \ d ? ; l  

, , , , ,  YLUL- 
0 991 , , , , , , ,,, , , , , , , 

 IO-^ IO-' loo 10' lo2 10' 
x 

Figure 4. Ratio RiJ '  = l ? : J ) / E ! e '  as function of A ,  where ( j )  represents the order of our 
approximation, and E:" are the exact values, taken from Hioe and Montroll (1975). 

and the error is usually less than 1 YO (0.99 < Rio' < 1.01) for almost every value of i 
and A. (As we will see in § 8, this is true even for i >> 1, namely in the WKB region.) 

As our  approach is variational, it is guaranteed that Rb"' and Rio' are  larger than 
1, while the Rio' ( i  2 2) are not necessarily larger than 1, because our  excited levels 
a r e  not orthogonal t o  the lower levels. The  fact that Rio' is larger than 1 comes from 
the symmetry property of our  total H :  since H is an even function of q and p ,  the 
ground state is an even function while the first excited state is an  odd function, and 
our approximation does not destroy this symmetry. 

The  corresponding states a i e  given by 

li(o)) = (l/J>)( 63'10). 

Thus the wavefunctions in the  q-representation a re  the usual Hermite polynomials, 
but appropriately scaled by a i :  
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4. The second-order perturbation due to If:” for arbitrary A and i 

The first-order perturbation due to Hi” is zero, as was shown in (2 .6 ) :  (ilH{’) l i )  = 0. 
The second-order perturbation is given by 

X {( i + 2 ) ( i  + 1)[-1+ af + 2Aa; ( 2 i  + 3)]2(E!0’  - HI’’ ( n  = i+2))-’ 

+ i ( i  - 1)[-1+ af + 2Aa: ( 2 i  - l)]’(E!’’ -HIo’ ( n  = i - 2))-’}.  (4 .1 )  

Using the relation for a ,  given by (2.10),  and y, given in (2 .9) ,  we obtain after some 
elementary algebra 

(4 .2 )  
while 

V i ( k )  E$’’ -Hi”(n = i +  k )  

3Aaf  
( 2 k )  -- [ ( i  + k ) 2 -  i’] 4 4 2 

1 
[ 8 i 2 + 2 i ( k + 4 ) + (  k + 3 ) - ( 2 k i +  k -  1 ) a f ]  

k - 
4 a i  ( 2 i 2 + 2 i + 1 )  

( k  can be negative also) and we finally get 

(4 .3)  

( i + 4 ) ( i + 3 ) ( i  + 2 ) ( i +  1 )  i ( i -  1)( i -  2 ) ( i -  3 )  
8 i 2 +  1 6 i + 7 - a f ( 8 i + 3 )  8 i 2 -  1 + a f ( 8 i + 5 )  

+ 
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+ 2( i +  2 ) ( i  + l ) i (  i - 1) 

)]. (4.4) 
i ( i -  1) ( i + 2) ( i + 1) + ( -8i2+ 12i+  5 - cr f (4 i+ 1) 8 i 2 + 4 i +  1 + a f ( 4 i + 3 )  

= E!’’ +E?’, where 
E!’’ is given by (3.1). This expression has some resemblance to (HMM (1.17)), because 
they are related by a similar calculational way. But they are not the same, and above 
all (HMM (1.17)) is valid only for small A, while our results are valid for arbitrary A. 
The two expressions deviate at about p - 1, as will be clearly seen from the graph of 
figure 5 .  

Thus our second-order perturbation results are given by 

y l =6P l  

Figure 5. Comparison of various E ,  = E , / ( i + i )  for very large i. finite p = i A ,  Equation 
(6.3) is good only for small p ;  (HMM,  (1.186)) is better, but it becomes proportional to 
y ( s 6 p )  for large p. Our formulae for E:” ((3.1)) and E!” ((8.3)) deviate at about p = 1 
( y = 6 )  from (HMM (1.186)) and are valid for intermediate and large p. 

As we see from the graphs of figure 4, - E : e ) ) / E : e )  I are usually less than 
0.01 for all ranges of A and i, and furthermore E:’’ has the correct sign and magnitude 
to reduce the error of E;’’ by a factor of about f. 

As we have already remarked in 0 3, we always have RA’’ 3 1 and R‘,’’ 5 1, while, 
as we may easily see from (4.4), if we put i = 0 or i = 1 there, Eh2’ < 0 and Ei2’ < 0, 
so our second approximation gives R :’) 3 E !” /E:‘’ > E !2) / E  I” = R i2) for i = 0 , l .  
But from the beginning it is not guaranteed that RI” 3 1 for i=O,  1; only after 
numerical calculations did we find this to be the case. 

Similarly for i 2 2 ,  generally speaking we are not sure whether RIo’ is larger or 
smaller than 1, and RI2’ is nearer to 1 than Rio’. Only after numerical calculations 
do we see that this is really the case for all ranges of A and i (even for i+co).  

5. The fourth-order perturbation due to Hi’), for the ground ( i  = 0) and first 
excited ( i  = 1) states for arbitrary A 

We may continue ‘our’ perturbation calculation due to H;’) systematically to higher 
orders, but in full generality this would become much more complicated and the 
numerical improvements are expected to be quite small, which will be shown below 
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to be true. So we will concentrate in this section only on the ground and the first 
excited states ( i  = 0, l ) ,  but still leave A arbitrary. 

The calculations of states with i =0,  1 are especially simple, as can be seen in 
formula (4.4) of § 4. In (4.4), for i = 0,1,  only the first term of the four terms in [ . . .] 
survives, which originates from b4 and b+4 in Hh" and Hi'). This is due to our choice 
of cyo and a , ,  namely 

[-(4a")- '+aa,+tAa;]=O for any A, 

since yo = 6A (see (2.9)). Then the coefficient of the ( b i  + b:2 )  term of Hhf' is zero. 
Hence our Hh" becomes simply 

Hi') =$Aai(b i  +4n0b i  +4b:2n0+b,f4) 

=[(1 - a i ) / ( 2 4 a , ) ] ( b i + 4 n o b ~  +4b," + l ~ , ' ~ ) .  (5.1) 

Hence clearly 

H ; ~ )  10) = :Aa;bi4 10) - 14), 
i.e. 

(21Ht'  10) = (0lHhf' 12) = 0 for any A 

identically. This makes our calculation for the ground state ( i  = 0) especially simple. 
For the i = 1 state we have y, = 10A so we have 

 CY,)-' +$a,  +$Aa;]=-Aa: 

and 
H'" = -Aa;(b:+b:2)+aAa:(b':+4nlb: +4b:2nl+b74). 

H'" = (Aa:/4)[6: + ( b t ) 4 + 4 ( n l  - 1)b: +4b:'(n, - l)] 
This time the coefficient of (b :  + bT2) does not vanish, but we can write 

=[(1- ~;)/40a,][b;' + (b:)4+4(nl - l)b:  +4bT2(n1- l)] (5.3) 
and we see 

b t 2 ( n 1  - 1)Il) = 0 

so that 

H'," 11) = ( A a ~ / 4 ) ( 6 ~ ) 4 \ 1 ) -  \ 5 ) ,  'i 
(5.4) i and therefore 

(3/H\" 11)=(11H\f)13)=0 for any A. 

The first excited state, i = 1, is also simple, which is the lowest state with odd parity. 
For states i 3 2, the situation is much more complicated as can be seen already 

from the second-order calculation of § 4 and formula (4.4). 
The properties (5.2) and (5.4) guarantee that the third-order perturbations are 

zero, since 
(OJH~"Hbf'H:'' 10) - (41H;' 14) = 0, ( l \ H ( ' ) H ( f ) H W  1 1 1 l 1 ) - (5~Hy~5)=0 .  ( 5 . 5 )  

On the other hand this is generally not the case for i 2 2, as for example 

(21H$')H:"H$" 12) - (21H$')H:" IO) - (21H:" 14) # 0. (5.6)  



Quantum theory of anharmonic oscillators 355 

By the same reasoning, for the states i = 0 , l  the fifth-order perturbations are not zero, 
as for example 

(0IHb”Hb”Hb”Hb”Hb” 10) - (4IHb”Hb”Hb” 14) - (8(Hb” 16) # 0 

since Hi’’ contains b:2n0, which brings 14)+ (6) .  

calculation for i = 0 and i = 1. For i = 0 , l  we have 
With these preliminary remarks let us now begin our fourth-order perturbation 

HbO’ ( n o )  = (4ao)-’[(3 + ai)( no++) + (1 - a i ) n i ] ,  (5.7) 

(5.8) Hi0’ (n l )  = (20a,)-’[( 13+7a:)(nl+$) + 3 ( 1 -  a:)n:] ,  

and, as in (4.3), 

Vi( k) Eto’ - Hj0’ ( n  = i + k) = Hio’ ( n  = i )  - Hio’ ( n  = i + k), 
V,(k) =-(k/4a0)[3+ k - a i ( k  - 111, (5.9) 
VI( k )  = -( k/20a1)[19+ 3k - a:(3k - l)]. (5.10) 

We will explicitly carry out the calculation for i = 0, but for i = 1 we will state only 
the results. 

E?) = (OlHb’) (E(0’ - H(0) )-i[Hbr)P(Ey) - H ~ o )  ) -IH(I)  
The standard perturbation theory gives us 

0 0 0 

-(01Hy’ (EIp’ -H~’”H~”~O)](EIp’ - H p ) - l H p  10) 

P= 1 - /O)(Ol 
where 

is the projection operator onto the non IO) states. From (5.2) we get 

E?’ = I(0lHb” 14)12( VJ,4))-2[(41Hb”P(Eb0’ -Hb0’)-’HL’’ 14)- Eh2’) 
I (5.11) 

where EL2’ is given by (4.4) with i = 0, namely 

E?’ = I(0lHr’ 14)12( V0(4))-’, 

in this notation. Vo(k) is given in (5.9) and 

(OlHb“14)=(1/./4?)[(1 - a ~ ) / 2 4 a o ] ( 0 1 b ~ b ~ 4 ~ O ) = J 4 ! [ ( 1  - ai) /24a0]  

etc. So after some calculation we arrive at 

(5.1 l a )  
So our fourth-order final result for i = 0 and arbitrary A is given by 

1 Eb4) = E(0) + E(2) + Er’  
0 0 

where Er’  is given by ( 5 . 1 1 ~ )  and 
EhO’ = 1  8(3/%+ ao), 

E!:’ =-[(1 - a i ) 2 / 2 4 ~ o ] ( 7 - 3 a i ) - ’  
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and a0 is the positive real root of 

This formula covers all ranges of A, and the worst case A -+ CO gives only a 0.01 ‘10 error 
compared with the exact numerical results obtained in Hioe and Montroll (1975). As 
can be seen from our figure 4, if we tolerated a maximum error of 0.4’10, then the 
much simpler formula Eho’ +Eh2’ of § 4 is sufficient for our purposes. And even our 
extremely simple formula Eh0’ covers all ranges of A within a maximum error of 2’10, 
as we can clearly see from figure4. A more detailed numerical comparison in the 
intermediate A region will be given in table 1. 

Let us first discuss the case A >> 1. We get for the leading terms 

(5.13) 

This should be compared with the exact values (cf HMM, table 1) 

E t ’  =0.6679826A”3+0.143 67A-1’3+. . . . 

Next let us discuss the case of A being small. For A small our a. is given by 

a0=1-3A + $ ( 3 A ) 2 - 8 ( 3 A ) 3 + ~ ( 3 A ) 4 + .  . . (5.14) 

and our HL” contains as a factor ha: (see (5.1)). If we perform the lth order of ‘our’ 
perturbation theory, we neglect only terms of order A’+’  so that our formula should 
give the correct usual perturbation result up to order A’. This means, our Eho’ gives 
the correct A‘’ and A ’  coefficients (because E t ’  = 0), Eho’ + Eh2’ goes up to A 3  (because 
E!;) = 0), Eho’ +E&*’ +E:’ gives the correct coefficients up to A4.(because Eh5’ # 0). 
We will show that this is really the case, and this fact will also guarantee that we are 
on the right track. If we systematically expand our formulae for small A, using (5.14), 
we get 

Eh0’ = ~ + ~ ( 3 A ) - ~ ( 3 A ) 2 + $ ( 3 A ) 3 - $ ( 3 A ) 4 + ,  . . , 
EX’ =-- :4(3A)2+~(3A)”-(3A)4+. . . , (5.15) 

(5.16) 

which reproduce the well known correct numerical coefficients given for example by 
Bender and Wu (1969, 1973) up to A, A 3  and A 4 ,  respectively, for Eho’, Eh2) and E(4) 0 ,  

as was argued above. This means that our formulae cover also the weak coupling 
( A  << 1) region quite satisfactorily, as they should. But our formula (5.12) covers all 
ranges of A with quite small error. As was already remarked above, since E?’ is not 
zero, we cannot get the correct A 5  coefficient if we expand (5.12). The fact that our 
Eh’’ +Ehz’ gives the correct A 3  coefficient is due to the special circumstance that 
~ h 3 l  - - 0. 

Now, for the first excited state ( i  = l ) ,  we have instead of (5.12): 
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(5.17) t 
) ?  J 189 

x ( L +  l4 + 
5-a:  37- 17a: 64(43-23a:)-512(31-11af) 

and ai is the positive real root of 

10Aai +a: - 1 = 0. 

This formula covers all ranges of A, and like I?:, even for A +CO the error is 0.013%, 
while Ek” + Eh2’ has at most an error of 0.17’/0, and the simplest expression E!’’ 
gives an error of 1.25% only (see figure 4 and table 2). 

,??y’ =E‘” 1 +E‘,’’ + E‘,4’ = 2.393 3259A1’3+0.357 8943A-’l3+ . . . .  
This should be compared with the exact values (cf HMM, table 1) 

For A >> 1 we obtain instead of (5.13): 

(5.18) 

~ ( e )  1 = 2.393 64402AL’3+0.357 80A-1/3+. , . . 

(5.19) 

For small A our a1 is given by 

Q I =  1-5A +$(5A)2-8(5A)3+y(5A)4+.  , . 

and we get 

E!*’ = ~ + $ ( 5 A ) - $ ( 5 A ) 2 + # ( 5 A ) 3 - ~ ( 5 A ) 4 + .  . . , 
(5.20) E(21 1 - - -1 4 0 ( 5 A ) 2 + ~ ( 5 A ) 3 - ~ ( 5 A ) 4 + .  . . , 

E‘,4’ = - & ( 5 A ) 4 + .  . . , 
and therefore 

(5.21) ~ ( 4 )  - ~ + y A - m  2 3915 3 5910345 4 
1 - 2  8 A +,A 2048 A + . . . .  

We believe these to be also the correct coefficients and the discussion given for i = 0 
is also valid here, since E‘,3’ = 0 and E‘,5’ # 0. 

6. The small-A regime for higher excited states ( i  > 2) 

As the calculation of perturbations due to HI” higher than the third order becomes 
quite complicated for i 3 2, we will be content with our second-order perturbation 
formulae (3.1), (3.2) and (4.4). 

For small A the solution of (3.2) is given by 

(6.1) a , = l - l  1 2 ~ i  + 5  2(5yi12+. I . . . 

We see that (1 -a?) is proportional to y;, or A, so the factor ( 1  -a:)’ in front of E$’’ 
is proportional to A’. Hence for small A we retain only terms proportional to A in 
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the rest of E:”. We can thus rewrite E;” in the following form: 

i+4 ) ( i  + 3)( i+  2)(i + 1) i( i -  l ) ( i -2)( i -3)  
16[4+(2i +5)6A] 16[4+ (2i-3)6A] 

E:” - - A 2 ( $ )  [‘ - 

( i  +2 ) ( i+  l ) i ( i -  1) 
(2 i+  1)‘ 

+ 
(6.2) 

Together with E!”’ for small A 

9 (2i2 + 2i + I)’ 
4 2 i + l  

E!’’ = ( i  +i) +;[ 1 + 2i( i + l)]A -- A ’ + .  . . (6.3) 

we obtain a formula fo r  (E;” + E j 2 ’ ) ,  which resembles the formula (HMM (1.17)) if 
we put l / a f  equal to 1 .  But l / a f  is equal t o  1 plus terms proportional t o  A, so that 
it is a little arbitrary to  keep A otherwise and not in a,. Still, (6.2) is not a consistent 
expansion in powers of A. If we neglect consistently all terms proportional to A 3 ,  then 
we get 

E:’’ = [(4i4+ 8i3-25i2- 29i - 3)/8(2i + l ) ]  A’+ .  . . 
and finally we obtain 

E:” +E)*’ = ( i + ~ ) + ~ ( 2 i 2 + 2 i + l ) A - ~ ( 3 4 i ’ + 5 1 i 2 + 5 9 i + 2 1 ) A 2 + .  . . . 
This agrees with the results for i = 0 , l  in 9 5 up to order A’, as it should. 

(6.4) 

Now if we let i + E, but keep A i  = p finite and small, we get 

( ~ 1 ” ” € i ” ) / ( i + t ) - 1 + 3 ~ - ~ ~ ’ + .  . . . (6.5) 
This agrees with the formula (HMM (1.18b)) for small p. W e  retained terms up  to  A 2 ,  
so that in the coefficient of p’,  p should be put to zero. We  will give the formulae 
valid for any p in 0 8. The  formula (HMM (1.186)) is not valid for p 3 1, as will be 
seen in § 8, while our formula (8.3) is valid also for large p. 

7. The large-A regime for higher excited states ( i  2 2) 

For i = 0,1,  we already gave a fourth-order calculation in § 5. W e  use here also our  
second-order formulae (3.1), (3.2) and (4.4), and expand them for large A. In this 
case a, is given by 

a ,  = (y,)-1”“-4y;”3 +$y;4’3 +. . .), y, =6A[(2i2+2i+1)/(2i+1)] .  (7.1) 

I I I . I  (7.2) 

So, if we expand in powers of y;”’ (or and express our result in the form 
Eio) +E:’) = A ’ / ” ‘ y ( ’ ’  +,L(’ jh- ’ /7+P~(’ jh-4 /3+.  . 

as in HMM, our  formula for p;”’ becomes too elaborate, so we will only give our 
expression for E :  and a i  ; 

1 i(i +i) + 
2i+ 1 36(2i2+2i+ 1) 

E ; ( z ’  = ( 6(2i2+ 2i + 1)) [ 
[ (y)2 ( - ( i + 4 ) ( i + 3 ) ( i + 2 ) ( i + l )  + i ( i -  l ) ( i -2) ( i -3)  

8i’+ 16i+ 7 8i2- 1 
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+ 2( i  +2) ( i+  l ) i ( i -  1) ( -8 i2+12i+5 i ( i - 1 )  + ( i+2)( i+1))]}  8 i 2 + 4 i + l  ’ (7.3) 

= (6(2i2+2i+l))-1’3 z( i + 4) - 1 
36(2i2+2i+ 1) 2 i + l  

{ (2i; I)’[ ( i  +4)( i  + 3)(i + 2)( i+ 1) 

i(i- l ) ( i -  2 ) ( i -  3) 

8i’ + 16i + 7 ( 8i2?:66:+7-i) 

+ 
8i2- 1 

i ( i -1)  + 2( i +2 ) ( i+  l ) i ( i -  1) 

( i+2) ( i+1)  ( 4 i + 3  +‘)]}I 
8 i z + 4 i + l  8 i 2 + 4 i + l  3 

+ (7.4) 

The first terms of (7.3) and (7.4) come from E:”’, and will be called E : “ )  and a:(’) 
respectively. 

This formula can be compared with the corresponding numerical values given in 
HMM, tables 1 and 2, which will be done in § 9 and is summarised in our table 4. 
Contrary to  the case of small A in § 6, where ‘our’ perturbation theory contains the 
‘usual’ perturbation theory, here our higher-order contributions E:4) . . . always 
bring a small numerical correction also for the coefficients of the leading terms 
(proportional to A A - ” 3  . . .). 

8. The large-i regime for arbitrary finite U 

For large i. it is more convenient t o  use 

as variable. Then our second-order perturbation results (3.1) and (4.4) have a more  
symmetrical form: 

+2(j2-”( ,Z-?) - ( 1’ - 2j  + :, 
4 1  4 (  8j2 + 4 j  + 1 - af (4j- 1) 

( j 2 +  2 j  + $) + 
8 j ’ -  4 j +  1 + a?  (4 j+  1) 

where 

y p j  3 2  +ai  -1 = o ,  Yi=6A ( 2i2+2i  2 i + l  + 1 ) = 6 A j ( l + + ) ,  
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After some algebra we arrive at 

E(’) 32( j’- 1/ 16j2)( j’ - $)( 5 - CY:) 
- 16j2( 1 - a:)’ 

-= - 
i (y)’;(&)( (Si’+ 1 + 

). - 8j4(7 + crf)  +4j2(1 + 4 5 a f )  -4(61- 1 4 9 a f )  
( 8 j2  + 1 + a f )’ - 64j2( 1 - (Y f ) 

This is still valid for any j (  = i+ i ) .  Now let j - ,  CO, keeping j A  = A finite, large or small. 
For any i and A, a,  is always between 0 and 1, as can be clearly seen from figure 3. 
Then we get 

E121 1 1 - ( Y f  ’ 1 
-=-(y) j [ ( 1 3 - 5 a f ) - 7 ( 2 1 6 + 8 5 o :  4 i  - 1 7 a f + 8 a p ) + .  . . 

So our formula for large j is given by 

This is our formula for large i and any finite A = ( i  + i ) A .  cyi  is given as usual, which 
covers quite well large and small A. For small A(-yl )  we use (6.1), and inserting this 
into (8.3) we get (6.3), as we should. For large A(-y,)  we use (7.1); inserting this 
into (8.3) and expanding up to the power we get 

1 4/ 3 [ 1.383 346 ( i+ l+- ) +0.262422(i+;)2/3h-2/3+. . , . 
2 16( i+ i )  

(8.4) 
This should be compared with the more accurate value (Hioe and Montroll 1975 
(IV. 16a) )  

Except that we get & = 0.0625 in place of 0.0265 in the first term, the agreement here 
is also satisfactory, especially in view of the fact that we used only ‘our’ second-order 
perturbation formula. 

Thus our formula (8.3) for large i covers really well all ranges of finite A = ( i  + + ) A .  
The formula (HMM (1.18b)) covers only small A,  whereas our formula (8.3) (which 
gives (6.3) in this case) is equally well suited and, as we have shown in figure 5, our 

t Now we neglect the (1/4j2)  term. In view of the large numerical coefficient one may be afraid that this 
could be dangerous for some range of finite A =]A. As we have assumed J large and A finite, small A (a, .+ 1) 
means j exceedingly large, so that the 1/4j2 term can be safely neglected in spite of its large numerical 
coefficient. And for large A (a ,+O)  we neglected 216/4j2 in comparison with 13, which is also all right 
for, say, J >  10 because E!*’ itself is only a small correction to Ej”’. 
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formula (8.3) and (HMM (1.186)) deviate near A -  1, as expected. Our formula also 
covers the intermediate A region well and connects smoothly with the correct result 
for large A. 

9. Intermediate regime of i and A. Numerical results 

For intermediate magnitudes of i and A we must return to formula (3.1) for our lowest 
order, and (4.4) for our second-order corrected results. First, for i = 0, we obtain 
from our fourth-order formula (5.12) the numerical results summarised in table 1. 
For this calculation we still need only a desk computer. For i = 1, from the correspond- 
ing formula (5.17), we obtain the results of table 2. As will be seen the maximal errors 
(in the case of large A )  are less than 0.012% and 0.013%, respectively. 

For the states with i # 0, 1 we must be content with the much more inaccurate 
formula (4.4). We have listed as examples the lowest- ((3.1)) and second-order ((4.4)) 
results for i = 2 , 3  and 8 in table 3. The accuracy of our approximation procedure can 
be most clearly seen from figure 4, where we plot the ratio of our results to the exact 
values as a function of A. We see that in general E;’’ < E!‘’ i E!” = E!’’ +E‘*’, and 
lRt2’ -1/=/(6!2’ - E i e ) ) / E l e ’ )  are much smaller than (R!”- l /=  I(E:” - E f e ) i / E : e ) /  
for any i. 

This means ‘our’ second-order perturbation calculations improve ‘our’ lowest-order 
results essentially, for all ranges of A. In table 4 we have summarised our calculated 
E!” and E:’) for the limiting case of large A (equations (7.2), (7.3), (7.4)), and even 
for this case we see that the agreement is satisfactory. 

10. Concluding remarks and discussion 

As we have seen, our method and the required numerical calculations are extremely 
simple; they contain only one adjustable parameter a, for given i and A in the special 
combination yi =6A(2i2+2i+1)/(2i+l).  Wesee that thelargest erroroccursat A +a3 
and i = 0. The other extreme case, i + CO, is less inaccurate. And even for the ( A  + m, 
i = 0) case ‘our’ fourth-order perturbation reduces the error to 0.01 YO. From these 
numerical results we are quite certain that if we calculate and Ei4’ also for i 5 2, 
then everything is expected to agree within, say, about 0.01%. 

As our method is simple enough, we may apply our method also to a pair of coupled 
oscillators with quartic coupling, as discussed in HMM. We have to introduce two 
parameters a1 and a2 for each oscillator. Our preliminary calculations show that our 
approach is also successful in this case. We will discuss these problems in a forthcoming 
paper. 
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